Suppr超能文献

空间分辨多组学:从单组学到多组学的数据分析

Spatially Resolved Multiomics: Data Analysis from Monoomics to Multiomics.

作者信息

Huan Changxiang, Li Jinze, Li Yingxue, Zhao Shasha, Yang Qi, Zhang Zhiqi, Li Chuanyu, Li Shuli, Guo Zhen, Yao Jia, Zhang Wei, Zhou Lianqun

机构信息

CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China.

School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China.

出版信息

BME Front. 2024 Jan 13;6:0084. doi: 10.34133/bmef.0084. eCollection 2025.

Abstract

Spatial monoomics has been recognized as a powerful tool for exploring life sciences. Recently, spatial multiomics has advanced considerably, which could contribute to clarifying many biological issues. Spatial monoomics techniques in epigenomics, genomics, transcriptomics, proteomics, and metabolomics can enhance our understanding of biological functions and cellular identities by simultaneously measuring tissue structures and biomolecule levels. Spatial monoomics technology has evolved from monoomics to spatial multiomics. Moreover, the spatial resolution, high-throughput detection capability, capture efficiency, and compatibility with various sample types of omics technology have considerably advanced. Despite the technological advances in this field, data analysis frameworks have stagnated. Current challenges include incomplete spatial monoomics data analysis pipeline, overly complex data analysis tasks, and few established spatial multiomics data analysis strategies. In this review, we systematically summarize recent developments of various spatial monoomics techniques and improvements in related data analysis pipeline. On the basis of the spatial multiomics technology, we propose a data integration strategy with cross-platform, cross-slice, and cross-modality. We summarize the potential applications of spatial monoomics technology, aiming to provide researchers and clinicians with a better understanding of how such applications have advanced. Spatial multiomics technology is expected to substantially impact biology and precision medicine through measurements of cellular tissue structures and the extraction of biomolecular features.

摘要

空间单组学已被公认为探索生命科学的强大工具。近年来,空间多组学取得了长足进展,这有助于阐明许多生物学问题。表观基因组学、基因组学、转录组学、蛋白质组学和代谢组学中的空间单组学技术可通过同时测量组织结构和生物分子水平,增强我们对生物学功能和细胞特性的理解。空间单组学技术已从单组学发展到空间多组学。此外,组学技术的空间分辨率、高通量检测能力、捕获效率以及与各种样本类型的兼容性都有了显著提高。尽管该领域技术取得了进步,但数据分析框架却停滞不前。当前的挑战包括空间单组学数据分析流程不完整、数据分析任务过于复杂以及成熟的空间多组学数据分析策略较少。在本综述中,我们系统地总结了各种空间单组学技术的最新进展以及相关数据分析流程的改进。基于空间多组学技术,我们提出了一种跨平台、跨切片和跨模态的数据整合策略。我们总结了空间单组学技术的潜在应用,旨在让研究人员和临床医生更好地了解此类应用的进展情况。空间多组学技术有望通过测量细胞组织结构和提取生物分子特征,对生物学和精准医学产生重大影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24e9/11725630/188bae8cca9e/bmef.0084.fig.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验