Vogan D A
Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139.
Proc Natl Acad Sci U S A. 1977 Jul;74(7):2649-50. doi: 10.1073/pnas.74.7.2649.
We obtain a classification of the irreducible (nonunitary) representations of a connected semisimple Lie group G, in terms of their restriction to a maximal compact subgroup K of G. (A classification in terms of analytic properties of the representations has been given by R. P. Langlands [(1973), mimeographed notes, Institute for Advanced Study, Princeton, NJ] for linear groups.) We first define a norm on the representations of K: if mu in K, mu is a nonnegative real number. Then if pi in G, mu is called a lowest K-type of pi if mu is minimal among the K-types occurring in pi. We announce a parameterization of the set of representations containing mu as a lowest K-type by the orbits of a finite group acting in a complex vector space (the dual of the vector part of a certain Cartan subgroup of G), and the result that mu necessarily occurs with multiplicity one in such representations.
我们根据连通半单李群(G)的不可约(非酉)表示在其对(G)的极大紧子群(K)的限制方面得到了一种分类。(对于线性群,R. P. 朗兰兹[(1973),油印笔记,普林斯顿高等研究院,新泽西州普林斯顿]已给出了根据表示的解析性质的分类。)我们首先在(K)的表示上定义一个范数:如果(\mu\in K),(\mu)是一个非负实数。那么如果(\pi\in G),若(\mu)在(\pi)中出现的(K)型中是最小的,则(\mu)被称为(\pi)的最低(K)型。我们宣布了包含(\mu)作为最低(K)型的表示集由在复向量空间((G)的某个嘉当子群的向量部分的对偶)中作用的有限群的轨道进行的一种参数化,以及(\mu)在这样的表示中必然以一重性出现的结果。