Hausel Tamás
Hausel group, Institute of Science and Technology Austria, Klosterneuburg 3400, Austria.
Proc Natl Acad Sci U S A. 2024 Sep 17;121(38):e2319341121. doi: 10.1073/pnas.2319341121. Epub 2024 Sep 11.
Here we announce the construction and properties of a big commutative subalgebra of the Kirillov algebra attached to a finite dimensional irreducible representation of a complex semisimple Lie group. They are commutative finite flat algebras over the cohomology of the classifying space of the group. They are isomorphic with the equivariant intersection cohomology of affine Schubert varieties, endowing the latter with a new ring structure. Study of the finer aspects of the structure of the big algebras will also furnish the stalks of the intersection cohomology with ring structure, thus ringifying Lusztig's -weight multiplicity polynomials i.e., certain affine Kazhdan-Lusztig polynomials.
在此,我们宣布与复半单李群的有限维不可约表示相关联的基里洛夫代数的一个大交换子代数的构造及其性质。它们是群分类空间上同调的交换有限平坦代数。它们与仿射舒伯特簇的等变相交上同调同构,赋予后者一种新的环结构。对这些大代数结构更精细方面的研究也将为相交上同调的茎提供环结构,从而将卢斯蒂格的 - 权重重数多项式(即某些仿射卡日丹 - 卢斯蒂格多项式)环化。