Thomas D D, Carlsen W F, Stryer L
Department of Structural Biology, Sherman Fairchild Center, Stanford University School of Medicine, Stanford, California 94305.
Proc Natl Acad Sci U S A. 1978 Dec;75(12):5746-50. doi: 10.1073/pnas.75.12.5746.
Energy transfer is enhanced by translational diffusion of the donor and acceptor [Steinberg, I. Z. & Katchalski, E. (1968) J. Chem. Phys. 48, 2404-2410]. The effect of diffusion on energy transfer depends on Dtau(0)/s(2), in which D is the sum of the diffusion coefficients of the donor and acceptor, tau(0) is the lifetime of the donor in the absence of transfer, and s is the mean distance between donors and acceptors. In most previous studies, Dtau(0)/s(2) << 1, corresponding to the static limit. We report here steady-state and kinetic fluorescence experiments showing that Dtau(0)/s(2) >> 1, the rapid-diffusion limit, can be attained by using Tb(3+) chelated to dipicolinate as a long-lived energy donor (tau(0) = 2.2 msec). The concentration of rhodamine B, the energy acceptor, resulting in 50% transfer was 0.67 muM, which is three orders of magnitude less than the concentration giving 50% transfer in the static limit. The dependence of the transfer efficiency on diffusion coefficients varying from 5 x 10(-11) to 1.5 x 10(-4) cm(2)/sec, spanning the range from the static limit to the rapid-diffusion limit, is in excellent agreement with theory. It is evident that energy donors with millisecond or longer excited state lifetimes can be used to probe translational motions in membranes and other assemblies. Energy transfer in the rapid diffusion limit is sensitive to the distance of closest approach (a) of the donor and acceptor. For a Tb.(DPA)(3) chelate trapped inside the aqueous space of a membrane vesicle containing eosin phosphatidylethanolamine, a = 10 A. The transverse location of chromophores in model membranes and biological membranes can be determined by this technique.
供体和受体的平移扩散增强了能量转移[斯坦伯格,I. Z. & 卡察尔斯基,E.(1968年)《化学物理杂志》48卷,2404 - 2410页]。扩散对能量转移的影响取决于Dτ(0)/s²,其中D是供体和受体扩散系数之和,τ(0)是供体在无转移情况下的寿命,s是供体与受体之间的平均距离。在大多数先前的研究中,Dτ(0)/s² << 1,对应于静态极限。我们在此报告稳态和动力学荧光实验,结果表明通过使用与二吡啶甲酸盐螯合的Tb(3+)作为长寿命能量供体(τ(0) = 2.2毫秒),可以达到Dτ(0)/s² >> 1,即快速扩散极限。导致50%转移的能量受体罗丹明B的浓度为0.67 μM,这比在静态极限下产生50%转移的浓度低三个数量级。转移效率对扩散系数在5×10⁻¹¹至1.5×10⁻⁴ cm²/秒之间变化(涵盖从静态极限到快速扩散极限的范围)的依赖性与理论高度吻合。显然,具有毫秒或更长激发态寿命的能量供体可用于探测膜和其他组装体中的平移运动。在快速扩散极限下的能量转移对供体和受体最接近距离(a)敏感。对于被困在含有曙红磷脂酰乙醇胺的膜囊泡水相空间内的Tb.(DPA)₃螯合物,a = 10 Å。通过该技术可以确定模型膜和生物膜中发色团的横向位置。