Jacob Maik H, D'Souza Roy N, Lazar Alexandra I, Nau Werner M
School of Science, Constructor University, 28759 Bremen, Germany.
Polymers (Basel). 2023 Jan 30;15(3):705. doi: 10.3390/polym15030705.
In the huge field of polymer structure and dynamics, including intrinsically disordered peptides, protein folding, and enzyme activity, many questions remain that cannot be answered by methodology based on artificial intelligence, X-ray, or NMR spectroscopy but maybe by fluorescence spectroscopy. The theory of Förster resonance energy transfer (FRET) describes how an optically excited fluorophore transfers its excitation energy through space to an acceptor moiety-with a rate that depends on the distance between donor and acceptor. When the donor and acceptor moiety are conjugated to different sites of a flexible peptide chain or any other linear polymer, the pair could in principle report on chain structure and dynamics, on the site-to-site distance distribution, and on the diffusion coefficient of mutual site-to-site motion of the peptide chain. However, the dependence of FRET on distance distribution and diffusion is not defined by a closed analytical expression but by a partial differential equation (PDE), by the Haas-Steinberg equation (HSE), which can only be solved by time-consuming numerical methods. As a second complication, time-resolved FRET measurements have thus far been deemed necessary. As a third complication, the evaluation requires a computationally demanding but indispensable global analysis of an extended experimental data set. These requirements have made the method accessible to only a few experts. Here, we show how the Haas-Steinberg equation leads to a closed analytical expression (CAE), the Haas-Steinberg-Jacob equation (HSJE), which relates a diffusion-diagnosing parameter, the effective donor-acceptor distance, to the augmented diffusion coefficient, , composed of the diffusion coefficient, , and the photophysical parameters that characterize the used FRET method. The effective donor-acceptor distance is easily retrieved either through time-resolved or steady-state fluorescence measurements. Any global fit can now be performed in seconds and minimizes the sum-of-square difference between the experimental values of the effective distance and the values obtained from the HSJE. In summary, the HSJE can give a decisive advantage in applying the speed and sensitivity of FRET spectroscopy to standing questions of polymer structure and dynamics.
在聚合物结构与动力学这一广阔领域,包括内在无序肽、蛋白质折叠和酶活性等方面,仍存在许多问题,这些问题无法通过基于人工智能、X射线或核磁共振光谱的方法来解答,但或许可以通过荧光光谱法来解决。弗斯特共振能量转移(FRET)理论描述了一个光激发荧光团如何通过空间将其激发能量转移到一个受体部分,转移速率取决于供体和受体之间的距离。当供体和受体部分连接到柔性肽链或任何其他线性聚合物的不同位点时,这一对组合原则上可以报告链的结构与动力学、位点间距离分布以及肽链位点间相互运动的扩散系数。然而,FRET对距离分布和扩散的依赖性并非由一个封闭的解析表达式定义,而是由一个偏微分方程(PDE),即哈斯 - 施泰因贝格方程(HSE)定义,该方程只能通过耗时的数值方法求解。作为第二个复杂因素,迄今为止,时间分辨FRET测量被认为是必要的。作为第三个复杂因素,评估需要对一个扩展的实验数据集进行计算要求高但不可或缺的全局分析。这些要求使得该方法仅为少数专家所掌握。在这里,我们展示了哈斯 - 施泰因贝格方程如何导出一个封闭的解析表达式(CAE),即哈斯 - 施泰因贝格 - 雅各布方程(HSJE),该方程将一个扩散诊断参数,即有效供体 - 受体距离,与由扩散系数和表征所用FRET方法的光物理参数组成的增强扩散系数相关联。有效供体 - 受体距离可以通过时间分辨或稳态荧光测量轻松获取。现在,任何全局拟合都可以在几秒钟内完成,并使有效距离的实验值与从HSJE获得的值之间的平方差之和最小化。总之,HSJE在将FRET光谱的速度和灵敏度应用于聚合物结构与动力学的现存问题方面可以提供决定性优势。