Suppr超能文献

乙烯生物合成:鉴定1-氨基环丙烷-1-羧酸为蛋氨酸转化为乙烯过程中的一种中间体。

Ethylene biosynthesis: Identification of 1-aminocyclopropane-1-carboxylic acid as an intermediate in the conversion of methionine to ethylene.

作者信息

Adams D O, Yang S F

机构信息

Department of Vegetable Crops, University of California, Davis, California 95616.

出版信息

Proc Natl Acad Sci U S A. 1979 Jan;76(1):170-4. doi: 10.1073/pnas.76.1.170.

Abstract

L-[U-(14)C]Methionine fed to apple tissue was efficiently converted to ethylene when the tissue was incubated in air. In nitrogen, however, it was not metabolized to ethylene but was instead converted to 1-aminocyclopropane-1-carboxylic acid (ACC). When apple tissues were fed with L-[methyl-(14)C]methionine or L-[(35)S]methionine and incubated in nitrogen, radioactivity was found subsequently in methylthioribose. This suggests that methionine is first converted to S-adenosylmethionine which is in turn fragmented to ACC and methylthioadenosine. Methylthioadenosine is then hydrolyzed to methylthioribose. The conclusion that ACC is an intermediate in the conversion of methionine to ethylene is based on the following observations: Labeled ACC was efficiently converted to ethylene by apple tissue incubated in air; the conversion of labeled methionine to ethylene was greatly decreased in the presence of unlabeled ACC, but the conversion of labeled ACC to ethylene was little affected by the presence of unlabeled methionine; and 2-amino-4-(2'-aminoethoxy)trans-3-butenoic acid, a potent inhibitor of pyridoxal phosphate-mediated enzyme reactions, greatly inhibited the conversion of methionine to ethylene but did not inhibit conversion of ACC to ethylene. These data indicate the following sequence for the pathway of ethylene biosynthesis in apple tissue: methionine --> S-adenosylmethionine --> ACC --> ethylene. A possible mechanism accounting for these reactions is presented.

摘要

将L-[U-(14)C]甲硫氨酸供给苹果组织后,当该组织在空气中培养时,它能有效地转化为乙烯。然而,在氮气中,它不会代谢生成乙烯,而是转化为1-氨基环丙烷-1-羧酸(ACC)。当用L-[甲基-(14)C]甲硫氨酸或L-[(35)S]甲硫氨酸供给苹果组织并在氮气中培养时,随后在甲基硫代核糖中发现了放射性。这表明甲硫氨酸首先转化为S-腺苷甲硫氨酸,而S-腺苷甲硫氨酸又依次裂解为ACC和甲硫基腺苷。然后甲硫基腺苷水解为甲基硫代核糖。ACC是甲硫氨酸转化为乙烯过程中的中间体这一结论基于以下观察结果:在空气中培养的苹果组织能将标记的ACC有效地转化为乙烯;在未标记的ACC存在下,标记的甲硫氨酸向乙烯的转化大大降低,但未标记的甲硫氨酸的存在对标记的ACC向乙烯的转化影响很小;以及2-氨基-4-(2'-氨基乙氧基)反式-3-丁烯酸,一种磷酸吡哆醛介导的酶反应的有效抑制剂,极大地抑制了甲硫氨酸向乙烯的转化,但不抑制ACC向乙烯的转化。这些数据表明苹果组织中乙烯生物合成途径的以下顺序:甲硫氨酸→S-腺苷甲硫氨酸→ACC→乙烯。文中还提出了一个解释这些反应的可能机制。

相似文献

6
Formation of cyanide from carbon 1 of 1-aminocyclopropane-1-carboxylic acid during its conversion to ethylene.
Proc Natl Acad Sci U S A. 1984 May;81(10):3059-63. doi: 10.1073/pnas.81.10.3059.
8
Intermediates in the recycling of 5-methylthioribose to methionine in fruits.
Plant Physiol. 1983 Oct;73(2):257-61. doi: 10.1104/pp.73.2.257.
10
1-Aminocyclopropane 1-Carboxylic Acid and Its Emerging Role as an Ethylene-Independent Growth Regulator.
Front Plant Sci. 2019 Dec 5;10:1602. doi: 10.3389/fpls.2019.01602. eCollection 2019.

引用本文的文献

2
1-Aminocyclopropane-1-carboxylic acid induces resource reallocation in sporophytes.
Front Plant Sci. 2025 Aug 15;16:1632530. doi: 10.3389/fpls.2025.1632530. eCollection 2025.
3
SlATG8f coordinates ethylene signaling and chloroplast turnover to drive tomato fruit ripening.
Plant Cell Rep. 2025 Aug 22;44(9):200. doi: 10.1007/s00299-025-03578-8.
4
The small-molecule pifithrin-α deactivates ETR1 to repress shade avoidance in .
Sci Adv. 2025 Aug 15;11(33):eadw9241. doi: 10.1126/sciadv.adw9241. Epub 2025 Aug 13.
5
An X-linked sex determination mechanism in cannabis and hop.
bioRxiv. 2025 Jul 24:2024.12.09.627636. doi: 10.1101/2024.12.09.627636.
9
The triggering mechanism for predominant hormonal signal production in fleshy fruit ripening.
Mol Hortic. 2025 Jun 6;5(1):35. doi: 10.1186/s43897-025-00155-1.

本文引用的文献

2
Involvement of hydrogen peroxide in the regulation of senescence in pear.
Plant Physiol. 1977 Mar;59(3):411-6. doi: 10.1104/pp.59.3.411.
3
Methionine metabolism and ethylene biosynthesis in senescent flower tissue of morning-glory.
Plant Physiol. 1976 Apr;57(4):528-37. doi: 10.1104/pp.57.4.528.
4
Inhibition of ethylene production by rhizobitoxine.
Plant Physiol. 1971 Jul;48(1):1-4. doi: 10.1104/pp.48.1.1.
5
Precursors of ethylene.
Plant Physiol. 1969 Sep;44(9):1347-9. doi: 10.1104/pp.44.9.1347.
6
Ethylene in plant growth.
Proc Natl Acad Sci U S A. 1973 Feb;70(2):591-7. doi: 10.1073/pnas.70.2.591.
7
THE PHYSIOLOGY OF ETHYLENE FORMATION IN APPLES.
Proc Natl Acad Sci U S A. 1959 Mar;45(3):335-44. doi: 10.1073/pnas.45.3.335.
8
Enzymatic cleavage of S-adenosylmethionine.
J Biol Chem. 1959 Jan;234(1):87-92.
9
1-Aminocyclopropane-1-carboxylic acid: a new amino-acid in perry pears and cider apples.
Nature. 1957 Feb 16;179(4555):360-1. doi: 10.1038/179360a0.
10
Conversion of methionine to ethylene in vegetative tissue and fruits.
Biochem Biophys Res Commun. 1967 Apr 20;27(2):125-30. doi: 10.1016/s0006-291x(67)80050-0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验