Courant Institute, New York University, New York, New York 10012.
Proc Natl Acad Sci U S A. 1980 Apr;77(4):1759-60. doi: 10.1073/pnas.77.4.1759.
The symbol square denotes the operator partial differential(2)/ partial differential(2) - Delta in three space dimensions, and F denotes a function with F(0) = F'(0) = 0, inf F'' > 0. It is shown that u(x,t) identical with 0, if squareu = F(u(tt)) for xin R(3), t >/= 0, provided u,u(t),u(tt) for t = 0 have compact support. Similarly v(x,t) identical with 0 if squarev = F'(v(t))v(tt) for x in R(3), t >/=0, provided v,v(t) for t = 0 have compact support and satisfy integral[v(t) - F(v(t))]dx >/= 0. This shows that the global existence theorem proved by S. L. Klainerman [(1980) Commun. Pure Appl. Math. 33, in press] in more than five space dimensions is not valid for three dimensions. The theorems also imply instability at rest of certain hyperelastic materials.
符号 square 表示在三维空间中的算子偏微分(2)/偏微分(2) - Delta,F 表示一个函数,满足 F(0) = F'(0) = 0,inf F'' > 0。证明了,如果对于 xin R(3),t >/= 0,有 squareu = F(u(tt)),则 u(x,t) = 0,前提是 u,u(t),u(tt) 在 t = 0 时有紧支集。类似地,如果对于 x in R(3),t >/= 0,有 squarev = F'(v(t))v(tt),则 v(x,t) = 0,前提是 v,v(t) 在 t = 0 时有紧支集并且满足积分[v(t) - F(v(t))]dx >/= 0。这表明 S. L. Klainerman [(1980) Commun. Pure Appl. Math. 33, in press] 在超过五维空间中证明的全局存在定理在三维空间中无效。这些定理还表明某些超弹性材料在静止时不稳定。