Browder F E
Department of Mathematics, University of Chicago, 5734 University Avenue, Chicago, Illinois 60637.
Proc Natl Acad Sci U S A. 1975 May;72(5):1937-9. doi: 10.1073/pnas.72.5.1937.
This paper studies the solution of the nonlinear Hammerstein equation u(x) + k(x,y)f[y,u(y)]mu(dy) = h(x) in the singular case, i.e., where the linear operator K with kernel k(x,y) is not defined for all the range of the nonlinear mapping F given by Fu(y) = f[y,u(y)] over the whole class X of functions u which are potential solutions of the equation. An existence theorem is derived under relatively minimal assumptions upon k and f, namely that (Ku,u) >/= 0, that K maps L(1) into L(1) (loc) and is compact from L(1) [unk] L(infinity) into L(1) (loc), that f(y,s) has the same sign as s for s >/= R, and that for each constant r > 0, f(y,s) </= g(r)(y) for s </= r where g is bounded and summable. The proof is obtained by combining a priori bounds, a truncation procedure, and a convergence argument using the Dunford-Pettis theorem.
本文研究奇异情形下非线性哈默斯坦方程(u(x) + \int k(x,y)f[y,u(y)]\mu(dy) = h(x))的解,即当具有核(k(x,y))的线性算子(K)对于由(Fu(y) = f[y,u(y)])给出的非线性映射(F)在方程的所有潜在解函数(u)的整个类(X)上的所有值域都没有定义时的情况。在对(k)和(f)相对较弱的假设下得出了一个存在性定理,即((Ku,u) \geq 0),(K)将(L(1))映射到(L(1))(局部)且从(L(1) \cap L(\infty))到(L(1))(局部)是紧的,对于(s \geq R),(f(y,s))与(s)具有相同的符号,并且对于每个常数(r > 0),当(s \leq r)时(f(y,s) \leq g(r)(y)),其中(g)是有界且可和的。通过结合先验界、截断过程以及使用邓福德 - 佩蒂斯定理的收敛论证来获得证明。