Department of Mathematics, Stanford University, Stanford, California 94305.
Proc Natl Acad Sci U S A. 1983 Jan;80(2):647-51. doi: 10.1073/pnas.80.2.647.
The bivariate distribution of pairs of random variables (X,Y) is said to be associated with respect to the classes of functions [unk] and [unk] if the product-moment correlation r[Phi(X),Psi(Y)] >/= 0 for all Phi euro [unk] and Psi euro [unk]. In the case in which both [unk] = [unk] = unk consist of all increasing functions, then the bivariate distribution of (X,Y) is said to be positive quadrant dependent. To apply the concept to data, I examine the correlations for classes of extremal functions that span by positive combinations the totality of functions Phi euro [unk] and Psi euro [unk] to investigate whether the pair of random variables (X,Y) are associated with respect to [unk] and [unk] and to assess the relative degree (or strength) of association when comparing two sets of random variables (X,Y) and (Z,W).
如果对于所有的 Φ 属于 [unk] 和 Ψ 属于 [unk] ,两个随机变量(X,Y)的二元分布的 矩相关系数 r[Φ(X), Ψ(Y)]≥0,则称其与函数类 [unk] 和 [unk] 相关。在 [unk]=[unk]=[unk](*)同时都由所有的增函数组成的情况下,称(X,Y)的二元分布为正象限相依。为了将这一概念应用于数据,我通过正组合来考察极值函数类的相关性,极值函数类跨越了 Φ 属于 [unk] 和 Ψ 属于 [unk] 的所有函数,以研究随机变量对(X,Y)是否与 [unk] 和 [unk] 相关,并在比较两组随机变量(X,Y)和(Z,W)时评估关联的相对程度(或强度)。