Moscow, U.S.S.R.
Proc Natl Acad Sci U S A. 1984 Aug;81(16):5267-70. doi: 10.1073/pnas.81.16.5267.
We consider two classes of quasi-linear parabolic equations depending on a small parameter epsilon. The asymptotic behavior of the solutions as t --> alpha and epsilon --> 0 is investigated by studying the associated Markov family. We find its dependence on the way t and epsilon(-1) go to infinity and on the initial point.
我们考虑了两类依赖于小参数 epsilon 的拟线性抛物型方程。通过研究相关的马尔可夫族,研究了当 t --> alpha 和 epsilon --> 0 时解的渐近行为。我们发现它依赖于 t 和 epsilon(-1) 趋于无穷大的方式以及初始点。