Boccardo Lucio, Orsina Luigi, Porzio Maria Michaela
Sapienza Università di Roma, P.le A. Moro 2, 00185 Rome, Italy.
Dipartimento di Matematica "G. Castelnuovo", Sapienza Università di Roma, P.le A. Moro 2, 00185 Rome, Italy.
J Evol Equ. 2021;21(2):2195-2211. doi: 10.1007/s00028-021-00678-2. Epub 2021 Mar 4.
In this paper we study the regularity and the behavior in time of the solutions to a quasilinear class of noncoercive problems whose prototype is In particular we show that under suitable conditions on the vector field , even if the problem is noncoercive and although the initial datum is only an function, there exist solutions that immediately improve their regularity and belong to every Lebesgue space. We also prove that solutions may become immediately bounded. Finally, we study the behavior in time of such regular solutions and we prove estimates that allow to describe their blow-up for near zero.
在本文中,我们研究一类拟线性非强制问题解的正则性和时间行为,其原型为 特别地,我们表明,在向量场的适当条件下,即使问题是非强制的,并且尽管初始数据仅是一个 函数,但仍存在解,这些解会立即提高其正则性并属于每个勒贝格空间。我们还证明了解可能会立即有界。最后,我们研究此类正则解的时间行为,并证明了一些估计,这些估计允许描述它们在 接近零时的爆破情况。