Suppr超能文献

The effects of chronic depolarization on L-type 1,4-dihydropyridine-sensitive, voltage-dependent Ca2+ channels in chick neural retina and rat cardiac cells.

作者信息

Ferrante J, Triggle D J, Rutledge A

机构信息

Department of Biochemical Pharmacology, School of Pharmacy, State University of New York, Buffalo 14260.

出版信息

Can J Physiol Pharmacol. 1991 Jul;69(7):914-20. doi: 10.1139/y91-139.

Abstract

Chick neural retina cells contain functional L-type voltage-dependent Ca2+ channels sensitive to 1,4-dihydropyridines. To investigate the effects of chronic depolarization, cells were grown in medium containing elevated K+. After 4-h to 4-day treatments with elevated K+ (12-73 mM), there was a concentration-dependent decrease in high affinity [3H]PN200-110 binding. Saturation analysis of cells treated for 4 days with 40 mM K+ showed a reduction in maximum ligand binding with no change in affinity. Control and experimental Bmax values were 70.7 +/- 6.4 and 42.2 +/- 4.5 fmol/mg protein, respectively, and control and experimental KD values were 70.2 +/- 7.4 and 68.6 +/- 7.4 x 10(-12) M. The effect of chronic depolarization was time-dependent, reversible, and without effect on cellular protein content. Reduction in 45Ca2+ uptake following chronic depolarization correlated well with the reduction in [3H]PN200-110 binding. The calcium ionophore A23187, 10(-6) M for 24 h, also decreased the binding site density. The calcium channel antagonist D600 had no effect alone on [3H]PN200-110 binding; however, D600 blocked the down-regulation of calcium channels induced by chronic depolarization. The mechanism for Ca2+ channel down-regulation may involve calcium entry, since the effect was blocked by D600 and mimicked by the calcium ionophore A23187. Chronic depolarization with either elevated K+ or veratridine, or chronic treatment with A23187 had no effect on calcium channels in rat neonatal ventricular myocytes, although these cells express functional channels of the 1,4-dihydropyridine-sensitive class.(ABSTRACT TRUNCATED AT 250 WORDS)

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验