Li Sheng, Kimura En, Ng Rainer, Fall Brent M, Meuse Leonard, Reyes Morayma, Faulkner John A, Chamberlain Jeffrey S
Department of Neurology, University of Washington School of Medicine, Seattle, 98195-7720, USA.
Hum Mol Genet. 2006 May 15;15(10):1610-22. doi: 10.1093/hmg/ddl082. Epub 2006 Apr 4.
A promising approach for treating Duchenne muscular dystrophy (DMD) is by autologous cell transplantation of myogenic stem cells transduced with a therapeutic expression cassette. Development of this method has been hampered by a low frequency of cellular engraftment, the difficulty of tracing transplanted cells, the rapid loss of autologous cells carrying marker genes that are unable to halt muscle necrosis and the difficulty of stable transfer of a large dystrophin gene into myogenic stem cells. We engineered a 5.7 kb miniDys-GFP fusion gene by replacing the dystrophin C-terminal domain (DeltaCT) with an eGFP coding sequence and removing much of the dystrophin central rod domain (DeltaH2-R19). In a transgenic mdx(4Cv) mouse expressing the miniDys-GFP fusion protein under the control of a skeletal muscle-specific promoter, the green fusion protein localized on the sarcolemma, where it assembled the dystrophin-glycoprotein complex and completely prevented the development of dystrophy in transgenic mdx(4Cv) muscles. When myogenic and other stem cells from these mice were transplanted into mdx(4Cv) recipients, donor cells can be readily identified in skeletal muscle by direct green fluorescence or by using antibodies against GFP or dystrophin. In mdx(4Cv) mice reconstituted with bone marrow cells from the transgenic mice, we monitored engraftment in various muscle groups and found the number of miniDys-GFP(+) fibers increased with time. We suggest that these transgenic mdx(4Cv) mice are highly useful for developing autologous cell therapies for DMD.
一种治疗杜氏肌营养不良症(DMD)的有前景的方法是通过用治疗性表达盒转导的成肌干细胞进行自体细胞移植。该方法的发展受到细胞植入频率低、追踪移植细胞困难、携带无法阻止肌肉坏死的标记基因的自体细胞迅速丢失以及将大的肌营养不良蛋白基因稳定转移到成肌干细胞中的困难等因素的阻碍。我们通过用增强型绿色荧光蛋白(eGFP)编码序列替换肌营养不良蛋白的C末端结构域(DeltaCT)并去除大部分肌营养不良蛋白中央杆状结构域(DeltaH2-R19),构建了一个5.7 kb的miniDys-GFP融合基因。在骨骼肌特异性启动子控制下表达miniDys-GFP融合蛋白的转基因mdx(4Cv)小鼠中,绿色融合蛋白定位于肌膜,在那里它组装了肌营养不良蛋白-糖蛋白复合物,并完全阻止了转基因mdx(4Cv)肌肉中营养不良症的发展。当将这些小鼠的成肌干细胞和其他干细胞移植到mdx(4Cv)受体中时,通过直接绿色荧光或使用抗GFP或抗肌营养不良蛋白的抗体,可以很容易地在骨骼肌中识别供体细胞。在用转基因小鼠的骨髓细胞重建的mdx(4Cv)小鼠中,我们监测了各种肌肉群中的植入情况,发现miniDys-GFP(+)纤维的数量随时间增加。我们认为这些转基因mdx(4Cv)小鼠对于开发DMD的自体细胞疗法非常有用。