Lindsay Angus, Baumann Cory W, Rebbeck Robyn T, Yuen Samantha L, Southern William M, Hodges James S, Cornea Razvan L, Thomas David D, Ervasti James M, Lowe Dawn A
Division of Rehabilitation Science and Division of Physical Therapy, Department of Rehabilitation Medicine, University of Minnesota, MMC 388, 420 Delaware Street SE, Minneapolis, 55455, USA.
Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 6-155 Jackson Hall, 321 Church Street SE, Minneapolis, 55455, USA.
Skelet Muscle. 2020 Feb 1;10(1):3. doi: 10.1186/s13395-020-0221-2.
Dystrophin deficiency sensitizes skeletal muscle of mice to eccentric contraction (ECC)-induced strength loss. ECC protocols distinguish dystrophin-deficient from healthy, wild type muscle, and test the efficacy of therapeutics for Duchenne muscular dystrophy (DMD). However, given the large lab-to-lab variability in ECC-induced strength loss of dystrophin-deficient mouse skeletal muscle (10-95%), mechanical factors of the contraction likely impact the degree of loss. Therefore, the purpose of this study was to evaluate the extent to which mechanical variables impact sensitivity of dystrophin-deficient mouse skeletal muscle to ECC.
We completed ex vivo and in vivo muscle preparations of the dystrophin-deficient mdx mouse and designed ECC protocols within physiological ranges of contractile parameters (length change, velocity, contraction duration, and stimulation frequencies). To determine whether these contractile parameters affected known factors associated with ECC-induced strength loss, we measured sarcolemmal damage after ECC as well as strength loss in the presence of the antioxidant N-acetylcysteine (NAC) and small molecule calcium modulators that increase SERCA activity (DS-11966966 and CDN1163) or lower calcium leak from the ryanodine receptor (Chloroxine and Myricetin).
The magnitude of length change, work, and stimulation duration ex vivo and in vivo of an ECC were the most important determinants of strength loss in mdx muscle. Passive lengthening and submaximal stimulations did not induce strength loss. We further showed that sarcolemmal permeability was associated with muscle length change, but it only accounted for a minimal fraction (21%) of the total strength loss (70%). The magnitude of length change also significantly influenced the degree to which NAC and small molecule calcium modulators protected against ECC-induced strength loss.
These results indicate that ECC-induced strength loss of mdx skeletal muscle is dependent on the mechanical properties of the contraction and that mdx muscle is insensitive to ECC at submaximal stimulation frequencies. Rigorous design of ECC protocols is critical for effective use of strength loss as a readout in evaluating potential therapeutics for muscular dystrophy.
肌营养不良蛋白缺乏使小鼠骨骼肌对离心收缩(ECC)诱导的力量损失敏感。ECC方案可区分肌营养不良蛋白缺乏的肌肉与健康的野生型肌肉,并测试治疗杜氏肌营养不良症(DMD)的疗法的疗效。然而,鉴于ECC诱导的肌营养不良蛋白缺乏的小鼠骨骼肌力量损失在不同实验室之间存在很大差异(10%-95%),收缩的机械因素可能会影响损失程度。因此,本研究的目的是评估机械变量对肌营养不良蛋白缺乏的小鼠骨骼肌对ECC敏感性的影响程度。
我们完成了肌营养不良蛋白缺乏的mdx小鼠的体外和体内肌肉制备,并在收缩参数(长度变化、速度、收缩持续时间和刺激频率)的生理范围内设计了ECC方案。为了确定这些收缩参数是否影响与ECC诱导的力量损失相关的已知因素,我们测量了ECC后的肌膜损伤以及在存在抗氧化剂N-乙酰半胱氨酸(NAC)和增加SERCA活性的小分子钙调节剂(DS-11966966和CDN1163)或降低来自兰尼碱受体的钙泄漏的小分子钙调节剂(氯氧嗪和杨梅素)的情况下的力量损失。
ECC在体外和体内的长度变化幅度、功和刺激持续时间是mdx肌肉力量损失的最重要决定因素。被动拉长和次最大刺激不会诱导力量损失。我们进一步表明,肌膜通透性与肌肉长度变化有关,但它仅占总力量损失(70%)的极小部分(21%)。长度变化幅度也显著影响NAC和小分子钙调节剂防止ECC诱导的力量损失的程度。
这些结果表明,ECC诱导的mdx骨骼肌力量损失取决于收缩的机械特性,并且mdx肌肉在次最大刺激频率下对ECC不敏感。严格设计ECC方案对于有效利用力量损失作为评估肌肉营养不良潜在疗法的指标至关重要。