Demirtas Hakan, Hedeker Donald
Division of Epidemiology and Biostatistics, University of Illinois at Chicago, Chicago, IL 60612, USA.
Stat Med. 2007 Feb 20;26(4):782-99. doi: 10.1002/sim.2560.
New quasi-imputation and expansion strategies for correlated binary responses are proposed by borrowing ideas from random number generation. The core idea is to convert correlated binary outcomes to multivariate normal outcomes in a sensible way so that re-conversion to the binary scale, after performing multiple imputation, yields the original specified marginal expectations and correlations. This conversion process ensures that the correlations are transformed reasonably which in turn allows us to take advantage of well-developed imputation techniques for Gaussian outcomes. We use the phrase 'quasi' because the original observations are not guaranteed to be preserved. We argue that if the inferential goals are well-defined, it is not necessary to strictly adhere to the established definition of multiple imputation. Our expansion scheme employs a similar strategy where imputation is used as an intermediate step. It leads to proportionally inflated observed patterns, forcing the data set to a complete rectangular format. The plausibility of the proposed methodology is examined by applying it to a wide range of simulated data sets that reflect alternative assumptions on complete data populations and missing-data mechanisms. We also present an application using a data set from obesity research. We conclude that the proposed method is a promising tool for handling incomplete longitudinal or clustered binary outcomes under ignorable non-response mechanisms.
借鉴随机数生成的思路,我们提出了针对相关二元反应的新的拟插补和扩展策略。核心思想是以合理的方式将相关二元结果转换为多元正态结果,以便在进行多次插补后再转换回二元尺度时,能得到原始指定的边际期望和相关性。这种转换过程确保相关性得到合理转换,进而使我们能够利用针对高斯结果的成熟插补技术。我们使用“拟”这个词,是因为原始观测值不一定能被保留。我们认为,如果推理目标明确,就不必严格遵循多次插补的既定定义。我们的扩展方案采用了类似的策略,将插补用作中间步骤。它会导致观测模式按比例膨胀,迫使数据集成为完整的矩形格式。通过将所提出的方法应用于广泛的模拟数据集来检验其合理性,这些模拟数据集反映了关于完整数据总体和缺失数据机制的不同假设。我们还展示了一个使用肥胖研究数据集的应用。我们得出结论,所提出的方法是处理可忽略的无应答机制下不完整纵向或聚类二元结果的一种有前景的工具。