Wertz Adrian, Rössler Wolfgang, Obermayer Malu, Bickmeyer Ulf
Biologische Anstalt Helgoland, Alfred Wegener Institute for Polar and Marine Research in Helmholtz Society, Kurpromenade 201, 27483 Helgoland, Germany.
Front Zool. 2006 Apr 6;3:6. doi: 10.1186/1742-9994-3-6.
For marine snails, olfaction represents a crucial sensory modality for long-distance reception, as auditory and visual information is limited. The posterior tentacle of Aplysia, the rhinophore, is a chemosensory organ and several behavioural studies showed that the rhinophores can detect pheromones, initiate orientation and locomotion toward food. However the functional neuroanatomy of the rhinophore is not yet clear. Here we apply serotonin-immunohistochemistry and fluorescent markers in combination with confocal microscopy as well as optical recording techniques to elucidate the structure and function of the rhinophore of the sea slug Aplysia punctata.
With anatomical techniques an overview of the neuroanatomical organization of the rhinophore is presented. Labelling with propidium iodide revealed one layer of cell nuclei in the sensory epithelium and densely packed cell nuclei beneath the groove of the rhinophore, which extends to about two third of the total length of the rhinophore. Serotonin immunoreactivity was found within the olfactory glomeruli underneath the epithelium as well as in the rhinophore ganglion. Retrograde tracing from the rhinophore ganglion with 4-(4-(dihexadecylamino)styryl)-N-methylpyridinium iodide (DiA) demonstrated the connection of glomeruli with the ganglion. Around 36 glomeruli (mean diameter 49 microm) were counted in a single rhinophore. Fluorimetric measurements of intracellular Ca2+ levels using Fura-2 AM loading revealed Ca2+-responses within the rhinophore ganglion to stimulation with amino acids. Bath application of different amino acids revealed differential responses at different positions within the rhinophore ganglion.
Our neuroanatomical study revealed the number and position of glomeruli in the rhinophore and the rhinophore ganglion as processing stage of sensory information. Serotonin-immunoreactive processes were found extensively within the rhinophore, but was not detected within any peripheral cell body. Amino acids were used as olfactory stimuli in optical recordings and induced sensory responses in the rhinophore ganglion. The complexity of changes in intracellular Ca2+-levels indicates, that processing of odour information takes place within the rhinophore ganglion. Our neuroanatomical and functional studies of the rhinophore open up a new avenue to analyze the olfactory system in Aplysia.
对于海生蜗牛来说,由于听觉和视觉信息有限,嗅觉是一种至关重要的远距离感知方式。海兔的后触角,即嗅角,是一个化学感应器官,多项行为学研究表明,嗅角能够检测信息素,并启动朝向食物的定向和移动。然而,嗅角的功能性神经解剖结构尚不清楚。在此,我们将血清素免疫组织化学和荧光标记与共聚焦显微镜以及光学记录技术相结合,以阐明斑点海兔嗅角的结构和功能。
利用解剖学技术展示了嗅角神经解剖组织的概况。用碘化丙啶标记显示,感觉上皮中有一层细胞核,嗅角沟下方有密集排列的细胞核,该沟延伸至嗅角总长度的约三分之二。在上皮下方的嗅觉小球以及嗅角神经节中发现了血清素免疫反应性。用4-(4-(二十六烷基氨基)苯乙烯基)-N-甲基碘化吡啶(DiA)对嗅角神经节进行逆行追踪,证明了小球与神经节之间的联系。在单个嗅角中计数到约36个小球(平均直径49微米)。使用Fura-2 AM负载对细胞内Ca2+水平进行荧光测量,结果显示嗅角神经节对氨基酸刺激有Ca2+反应。浴加不同的氨基酸显示,嗅角神经节内不同位置有不同的反应。
我们的神经解剖学研究揭示了嗅角中小球的数量和位置以及作为感觉信息处理阶段的嗅角神经节。在嗅角内广泛发现了血清素免疫反应性过程,但在任何外周细胞体中均未检测到。在光学记录中使用氨基酸作为嗅觉刺激,并在嗅角神经节中诱导出感觉反应。细胞内Ca2+水平变化的复杂性表明,气味信息的处理发生在嗅角神经节内。我们对嗅角的神经解剖学和功能研究为分析海兔的嗅觉系统开辟了一条新途径。