Fender Aurélie, Sauter Claude, Messmer Marie, Pütz Joern, Giegé Richard, Florentz Catherine, Sissler Marie
Institut de Biologie Moléculaire et Cellulaire du CNRS, Unite Propre de Recherche 9002, Université Louis Pasteur, Department Machineries Traductionnelles, 15 Rue René Descartes, F-67084 Strasbourg Cedex, France.
J Biol Chem. 2006 Jun 9;281(23):15980-6. doi: 10.1074/jbc.M511633200. Epub 2006 Apr 5.
In mammalian mitochondria the translational machinery is of dual origin with tRNAs encoded by a simplified and rapidly evolving mitochondrial (mt) genome and aminoacyl-tRNA synthetases (aaRS) coded by the nuclear genome, and imported. Mt-tRNAs are atypical with biased sequences, size variations in loops and stems, and absence of residues forming classical tertiary interactions, whereas synthetases appear typical. This raises questions about identity elements in mt-tRNAs and adaptation of their cognate mt-aaRSs. We have explored here the human mt-aspartate system in which a prokaryotic-type AspRS, highly similar to the Escherichia coli enzyme, recognizes a bizarre tRNA(Asp). Analysis of human mt-tRNA(Asp) transcripts confirms the identity role of the GUC anticodon as in other aspartylation systems but reveals the non-involvement of position 73. This position is otherwise known as the site of a universally conserved major aspartate identity element, G73, also known as a primordial identity signal. In mt-tRNA(Asp), position 73 can be occupied by any of the four nucleotides without affecting aspartylation. Sequence alignments of various AspRSs allowed placing Gly-269 at a position occupied by Asp-220, the residue contacting G73 in the crystallographic structure of E. coli AspRS-tRNA(Asp) complex. Replacing this glycine by an aspartate renders human mt-AspRS more discriminative to G73. Restriction in the aspartylation identity set, driven by a rapid mutagenic rate of the mt-genome, suggests a reverse evolution of the mt-tRNA(Asp) identity elements in regard to its bacterial ancestor.
在哺乳动物线粒体中,翻译机制具有双重起源,tRNA由简化且快速进化的线粒体(mt)基因组编码,而氨酰tRNA合成酶(aaRS)则由核基因组编码并导入。线粒体tRNA具有非典型特征,其序列有偏向性,环和茎存在大小变异,且缺乏形成经典三级相互作用的残基,而合成酶看起来是典型的。这就引发了关于线粒体tRNA中的识别元件及其同源线粒体aaRS适应性的问题。我们在此研究了人类线粒体天冬氨酸系统,其中一种原核类型的天冬氨酸tRNA合成酶(AspRS),与大肠杆菌的酶高度相似,识别一种奇特的tRNA(Asp)。对人类线粒体tRNA(Asp)转录本的分析证实了与其他天冬氨酸化系统一样,GUC反密码子具有识别作用,但揭示了第73位不参与此过程。这个位置是普遍保守的主要天冬氨酸识别元件G73的位点,G73也被称为原始识别信号。在mt-tRNA(Asp)中,第73位可以被四种核苷酸中的任何一种占据,而不影响天冬氨酸化。对各种AspRS的序列比对使得可以将甘氨酸-269置于天冬氨酸-220所占据的位置,天冬氨酸-220是在大肠杆菌AspRS-tRNA(Asp)复合物的晶体结构中与G73接触的残基。将这个甘氨酸替换为天冬氨酸会使人类线粒体AspRS对G73更具辨别力。线粒体基因组快速的诱变率导致天冬氨酸化识别集受到限制,这表明mt-tRNA(Asp)识别元件相对于其细菌祖先发生了逆向进化。