Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA.
Department of Cellular Biochemistry, University Medical Center Göttingen, 37073, Göttingen, Germany.
Nat Commun. 2023 Aug 9;14(1):4794. doi: 10.1038/s41467-023-40354-2.
Animal mitochondrial gene expression relies on specific interactions between nuclear-encoded aminoacyl-tRNA synthetases and mitochondria-encoded tRNAs. Their evolution involves an antagonistic interplay between strong mutation pressure on mtRNAs and selection pressure to maintain their essential function. To understand the molecular consequences of this interplay, we analyze the human mitochondrial serylation system, in which one synthetase charges two highly divergent mtRNA isoacceptors. We present the cryo-EM structure of human mSerRS in complex with mtRNA, and perform a structural and functional comparison with the mSerRS-mtRNA complex. We find that despite their common function, mtRNA and mtRNA show no constrain to converge on shared structural or sequence identity motifs for recognition by mSerRS. Instead, mSerRS evolved a bimodal readout mechanism, whereby a single protein surface recognizes degenerate identity features specific to each mtRNA. Our results show how the mutational erosion of mtRNAs drove a remarkable innovation of intermolecular specificity rules, with multiple evolutionary pathways leading to functionally equivalent outcomes.
动物线粒体基因的表达依赖于核编码的氨酰-tRNA 合成酶与线粒体编码的 tRNA 之间的特异性相互作用。它们的进化涉及到 mtRNA 上强烈的突变压力与维持其基本功能的选择压力之间的拮抗相互作用。为了了解这种相互作用的分子后果,我们分析了人类线粒体丝氨酸化系统,其中一个合成酶为两个高度不同的 mtRNA 同工受体提供电荷。我们展示了与人 mSerRS 与 mtRNA 复合物的低温电子显微镜结构,并进行了结构和功能比较与 mSerRS-mtRNA 复合物。我们发现,尽管它们具有共同的功能,但 mtRNA 和 mtRNA 并没有收敛到共享的结构或序列身份基序,以被 mSerRS 识别。相反,mSerRS 进化出了一种双峰读取机制,其中单个蛋白质表面识别每种 mtRNA 特有的退化身份特征。我们的研究结果表明,mtRNA 的突变侵蚀是如何驱动分子间特异性规则的显著创新的,多种进化途径导致了功能等效的结果。