Suppr超能文献

一种通过Xer重组切除选择标记基因以实现细菌染色体基因替换的高效方法。

An efficient method of selectable marker gene excision by Xer recombination for gene replacement in bacterial chromosomes.

作者信息

Bloor Alexandra E, Cranenburgh Rocky M

机构信息

Cobra Biomanufacturing Plc, The Science Park, Keele, Staffordshire ST5 5SP, United Kingdom.

出版信息

Appl Environ Microbiol. 2006 Apr;72(4):2520-5. doi: 10.1128/AEM.72.4.2520-2525.2006.

Abstract

A simple, effective method of unlabeled, stable gene insertion into bacterial chromosomes has been developed. This utilizes an insertion cassette consisting of an antibiotic resistance gene flanked by dif sites and regions homologous to the chromosomal target locus. dif is the recognition sequence for the native Xer site-specific recombinases responsible for chromosome and plasmid dimer resolution: XerC/XerD in Escherichia coli and RipX/CodV in Bacillus subtilis. Following integration of the insertion cassette into the chromosomal target locus by homologous recombination, these recombinases act to resolve the two directly repeated dif sites to a single site, thus excising the antibiotic resistance gene. Previous approaches have required the inclusion of exogenous site-specific recombinases or transposases in trans; our strategy demonstrates that this is unnecessary, since an effective recombination system is already present in bacteria. The high recombination frequency makes the inclusion of a counter-selectable marker gene unnecessary.

摘要

一种将未标记的稳定基因插入细菌染色体的简单有效方法已被开发出来。这一方法利用了一个插入盒,该插入盒由一个抗生素抗性基因组成,其两侧是dif位点和与染色体靶位点同源的区域。dif是负责染色体和质粒二聚体拆分的天然Xer位点特异性重组酶的识别序列:大肠杆菌中的XerC/XerD以及枯草芽孢杆菌中的RipX/CodV。通过同源重组将插入盒整合到染色体靶位点后,这些重组酶会将两个直接重复的dif位点解析为单个位点,从而切除抗生素抗性基因。以往的方法需要在反式中引入外源位点特异性重组酶或转座酶;我们的策略表明这是不必要的,因为细菌中已经存在有效的重组系统。高重组频率使得无需包含反选择标记基因。

相似文献

1
An efficient method of selectable marker gene excision by Xer recombination for gene replacement in bacterial chromosomes.
Appl Environ Microbiol. 2006 Apr;72(4):2520-5. doi: 10.1128/AEM.72.4.2520-2525.2006.
2
Identification and characterization of the dif Site from Bacillus subtilis.
J Bacteriol. 2001 Feb;183(3):1058-68. doi: 10.1128/JB.183.3.1058-1068.2001.
3
The ripX locus of Bacillus subtilis encodes a site-specific recombinase involved in proper chromosome partitioning.
J Bacteriol. 1999 Oct;181(19):6053-62. doi: 10.1128/JB.181.19.6053-6062.1999.
4
FtsK-dependent and -independent pathways of Xer site-specific recombination.
EMBO J. 1999 Oct 15;18(20):5724-34. doi: 10.1093/emboj/18.20.5724.
5
Recombinase binding specificity at the chromosome dimer resolution site dif of Escherichia coli.
J Mol Biol. 1997 Feb 28;266(3):525-37. doi: 10.1006/jmbi.1996.0828.
6
Xer-cise in Helicobacter pylori: one-step transformation for the construction of markerless gene deletions.
Helicobacter. 2012 Dec;17(6):435-43. doi: 10.1111/j.1523-5378.2012.00969.x. Epub 2012 Jun 24.
7
The unconventional Xer recombination machinery of Streptococci/Lactococci.
PLoS Genet. 2007 Jul;3(7):e117. doi: 10.1371/journal.pgen.0030117.
8
Determinants of selectivity in Xer site-specific recombination.
Genes Dev. 1996 Mar 15;10(6):762-73. doi: 10.1101/gad.10.6.762.
9
A simple method for multiple modification of the Escherichia coli K-12 chromosome.
Biosci Biotechnol Biochem. 2007 Dec;71(12):2905-11. doi: 10.1271/bbb.70274. Epub 2007 Dec 7.
10
Sequential strand exchange by XerC and XerD during site-specific recombination at dif.
J Biol Chem. 2000 Apr 7;275(14):9930-6. doi: 10.1074/jbc.275.14.9930.

引用本文的文献

1
Improved methods for genetic manipulation of the alkaliphile .
Front Microbiol. 2024 Sep 18;15:1465811. doi: 10.3389/fmicb.2024.1465811. eCollection 2024.
2
The CssRS two-component system of Bacillus subtilis contributes to teicoplanin and polymyxin B response.
Folia Microbiol (Praha). 2025 Feb;70(1):83-99. doi: 10.1007/s12223-024-01179-8. Epub 2024 Jun 7.
3
The effect of site-specific recombinases XerCD on the removal of over-replicated chromosomal DNA through outer membrane vesicles in bacteria.
Microbiol Spectr. 2024 Mar 5;12(3):e0234323. doi: 10.1128/spectrum.02343-23. Epub 2024 Feb 13.
4
Chromosomal engineering of inducible isopropanol- butanol-ethanol production in .
Front Bioeng Biotechnol. 2023 Jun 16;11:1218099. doi: 10.3389/fbioe.2023.1218099. eCollection 2023.
5
Xer recombination for the automatic deletion of selectable marker genes from plasmids in enteric bacteria.
Synth Biol (Oxf). 2022 May 13;7(1):ysac005. doi: 10.1093/synbio/ysac005. eCollection 2022.
8
An overview and future prospects of recombinant protein production in Bacillus subtilis.
Appl Microbiol Biotechnol. 2021 Sep;105(18):6607-6626. doi: 10.1007/s00253-021-11533-2. Epub 2021 Sep 1.
9
Engineering a Novel Bivalent Oral Vaccine against Enteric Fever.
Int J Mol Sci. 2021 Mar 23;22(6):3287. doi: 10.3390/ijms22063287.
10
Plasmids: Diversity and Development of Classification Strategies.
Front Microbiol. 2020 Nov 13;11:588410. doi: 10.3389/fmicb.2020.588410. eCollection 2020.

本文引用的文献

1
Plasmid vectors for marker-free chromosomal insertion of genetic material in Escherichia coli.
Methods Mol Biol. 2004;267:135-43. doi: 10.1385/1-59259-774-2:135.
2
Genetic engineering using homologous recombination.
Annu Rev Genet. 2002;36:361-88. doi: 10.1146/annurev.genet.36.061102.093104. Epub 2002 Jun 11.
3
A new mutation delivery system for genome-scale approaches in Bacillus subtilis.
Mol Microbiol. 2002 Oct;46(1):25-36. doi: 10.1046/j.1365-2958.2002.03140.x.
4
Identification and characterization of the dif Site from Bacillus subtilis.
J Bacteriol. 2001 Feb;183(3):1058-68. doi: 10.1128/JB.183.3.1058-1068.2001.
9
One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products.
Proc Natl Acad Sci U S A. 2000 Jun 6;97(12):6640-5. doi: 10.1073/pnas.120163297.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验