Lockwood D H, Livingston J N, Amatruda J M
Fed Proc. 1975 Jun;34(7):1564-9.
The status of insulin-receptor interactions in a variety of insulin-resistant states is reviewed. Utilizing large adipocytes from adult rats and small fat cells from young rats, we have conducted a series of in vitro experiments in an attempt to determine the cellular alteration(s) responsible for the insulin resistance associated with obesity. Stimulation of glucose oxidation by insulin is reduced in large cells. Studies using a mimicker of insulin action, spermine, as well as measurements of 125I-insulin binding to large and small cells indicate that receptor number and affinity are not responsible for hormone resistance. Furthermore, when rapid and direct measurements of sugar uptake were made, insulin stimulation was virtually identical in both cell types. These findings indicate that large adipocytes have an efficient insulin-responsive D-glucose transport system and suggest that the apparent hormone resistance may be due to alterations in intracellular glucose metabolism. It has been proposed that altered insulin-receptor interaction underlies the insulin resistance of human obesity. We have investigated this particular aspect of insulin action by 125I-insulin binding studies. Similar numbers of insulin receptors per cell and affinity for insulin were observed in adipocytes obtained from normal weight subjects and morbidly obese patients. Thus, the initial step in insulin action is unaltered in human obesity.