Longo Nicola, Amat di San Filippo Cristina, Pasquali Marzia
Division of Medical Genetics, Department of Pediatrics, University of Utah, 2C412 SOM, 50 North Medical Drive, Salt Lake City, UT, USA.
Am J Med Genet C Semin Med Genet. 2006 May 15;142C(2):77-85. doi: 10.1002/ajmg.c.30087.
Carnitine plays an essential role in the transfer of long-chain fatty acids across the inner mitochondrial membrane. This transfer requires enzymes and transporters that accumulate carnitine within the cell (OCTN2 carnitine transporter), conjugate it with long chain fatty acids (carnitine palmitoyl transferase 1, CPT1), transfer the acylcarnitine across the inner plasma membrane (carnitine-acylcarnitine translocase, CACT), and conjugate the fatty acid back to Coenzyme A for subsequent beta oxidation (carnitine palmitoyl transferase 2, CPT2). Deficiency of the OCTN2 carnitine transporter causes primary carnitine deficiency, characterized by increased losses of carnitine in the urine and decreased carnitine accumulation in tissues. Patients can present with hypoketotic hypoglycemia and hepatic encephalopathy, or with skeletal and cardiac myopathy. This disease responds to carnitine supplementation. Defects in the liver isoform of CPT1 present with recurrent attacks of fasting hypoketotic hypoglycemia. The heart and the muscle, which express a genetically distinct form of CPT1, are usually unaffected. These patients can have elevated levels of plasma carnitine. CACT deficiency presents in most cases in the neonatal period with hypoglycemia, hyperammonemia, and cardiomyopathy with arrhythmia leading to cardiac arrest. Plasma carnitine levels are extremely low. Deficiency of CPT2 present more frequently in adults with rhabdomyolysis triggered by prolonged exercise. More severe variants of CPT2 deficiency present in the neonatal period similarly to CACT deficiency associated or not with multiple congenital anomalies. Treatment for deficiency of CPT1, CPT2, and CACT consists in a low-fat diet supplemented with medium chain triglycerides that can be metabolized by mitochondria independently from carnitine, carnitine supplements, and avoidance of fasting and sustained exercise.
肉碱在长链脂肪酸穿过线粒体内膜的过程中起着至关重要的作用。这一转运过程需要多种酶和转运体,包括在细胞内积累肉碱的(OCTN2肉碱转运体)、将其与长链脂肪酸结合的(肉碱棕榈酰转移酶1,CPT1)、将酰基肉碱转运过线粒体内膜的(肉碱-酰基肉碱转位酶,CACT),以及将脂肪酸重新与辅酶A结合以进行后续β氧化的(肉碱棕榈酰转移酶2,CPT2)。OCTN2肉碱转运体缺乏会导致原发性肉碱缺乏症,其特征是尿中肉碱损失增加,组织中肉碱积累减少。患者可能出现低酮性低血糖和肝性脑病,或骨骼肌和心肌病。这种疾病对补充肉碱有反应。CPT1肝脏同工型缺陷表现为反复出现的空腹低酮性低血糖发作。心脏和肌肉表达一种基因上不同形式的CPT1,通常不受影响。这些患者血浆肉碱水平可能升高。CACT缺乏症在大多数情况下在新生儿期出现,表现为低血糖、高氨血症和伴有心律失常导致心脏骤停的心肌病。血浆肉碱水平极低。CPT2缺乏症在成年人中更常见,由长时间运动引发横纹肌溶解。CPT2缺乏症更严重的变体在新生儿期出现,类似于与多种先天性异常相关或不相关的CACT缺乏症。CPT1、CPT2和CACT缺乏症的治疗包括低脂饮食,补充可由线粒体独立于肉碱代谢的中链甘油三酯、补充肉碱,以及避免禁食和持续运动。