Suppr超能文献

使用基质辅助激光解吸电离飞行时间质谱血清蛋白谱检测结直肠癌

Detection of colorectal cancer using MALDI-TOF serum protein profiling.

作者信息

de Noo Mirre E, Mertens Bart J A, Ozalp Aliye, Bladergroen Marco R, van der Werff Martijn P J, van de Velde Cornelis J H, Deelder Andre M, Tollenaar Rob A E M

机构信息

Department of Surgery, K6-R, Leiden University Medical Center, Albinusdreef 2, P.O. Box 9600, 2300 RC Leiden, The Netherlands.

出版信息

Eur J Cancer. 2006 May;42(8):1068-76. doi: 10.1016/j.ejca.2005.12.023. Epub 2006 Apr 17.

Abstract

Serum protein profiling is a promising approach for classification of cancer versus non-cancer samples. The objective of our study was to assess the feasibility of mass spectrometry based protein profiling for the discrimination of colorectal cancer (CRC) patients from healthy individuals. In a randomized block design, pre-operative serum samples obtained from 66 colorectal cancer patients and 50 controls were used to generate MALDI-TOF protein profiles. After pre-processing of the spectra, linear discriminant analysis with double cross-validation was used to classify protein profiles. A total recognition rate (92.6%), sensitivity (95.2%) and specificity (90.0%) for the detection of CRC were shown. The area under the curve of the classifier was 97.3%, and demonstrated the high, significant separation power of the classifier. Double cross-validation shows that classification can be attributed to information in the protein profile. Although preliminary, the high sensitivity and specificity indicate the potential usefulness of serum protein profiles for the detection of colorectal cancer.

摘要

血清蛋白质谱分析是一种用于区分癌症样本与非癌症样本的有前景的方法。我们研究的目的是评估基于质谱的蛋白质谱分析用于区分结直肠癌(CRC)患者与健康个体的可行性。在随机区组设计中,从66例结直肠癌患者和50例对照者获取的术前血清样本用于生成基质辅助激光解吸电离飞行时间(MALDI-TOF)蛋白质谱。在对光谱进行预处理后,采用双重交叉验证的线性判别分析对蛋白质谱进行分类。结果显示,检测CRC的总识别率为92.6%,灵敏度为95.2%,特异性为90.0%。分类器的曲线下面积为97.3%,表明该分类器具有很高的显著区分能力。双重交叉验证表明,分类可归因于蛋白质谱中的信息。尽管尚处于初步阶段,但高灵敏度和特异性表明血清蛋白质谱在检测结直肠癌方面具有潜在的实用性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验