Suppr超能文献

使用两阶段优化方法在计算机上发现结直肠癌转移中的重要通路。

In silico discovery of significant pathways in colorectal cancer metastasis using a two-stage optimisation approach.

作者信息

Akutekwe Arinze, Seker Huseyin, Yang Shengxiang

机构信息

Department of Computer Science and Digital Technologies, Bio-Health Informatics Research Group, University of Northumbria at Newcastle, Newcastle upon Tyne NE1 8ST, UK.

School of Computer Science and Informatics, Centre for Computational Intelligence, De Montfort University, Leicester LE1 9BH, UK.

出版信息

IET Syst Biol. 2015 Dec;9(6):294-302. doi: 10.1049/iet-syb.2015.0031.

Abstract

Accurate and reliable modelling of protein-protein interaction networks for complex diseases such as colorectal cancer can help better understand mechanism of diseases and potentially discover new drugs. Different machine learning methods such as empirical mode decomposition combined with least square support vector machine, and discrete Fourier transform have been widely utilised as a classifier and for automatic discovery of biomarkers for the diagnosis of the disease. The existing methods are, however, less efficient as they tend to ignore interaction with the classifier. In this study, the authors propose a two-stage optimisation approach to effectively select biomarkers and discover interactions among them. At the first stage, particle swarm optimisation (PSO) and differential evolution (DE) are used to optimise parameters of support vector machine recursive feature elimination algorithm, and dynamic Bayesian network is then used to predict temporal relationship between biomarkers across two time points. Results show that 18 and 25 biomarkers selected by PSO and DE-based approach, respectively, yields the same accuracy of 97.3% and F1-score of 97.7 and 97.6%, respectively. The stratified analysis reveals that Alpha-2-HS-glycoprotein was a dominant hub gene with multiple interactions to other genes including Fibrinogen alpha chain, which is also a potential biomarker for colorectal cancer.

摘要

对结直肠癌等复杂疾病的蛋白质-蛋白质相互作用网络进行准确可靠的建模,有助于更好地理解疾病机制,并有可能发现新药。不同的机器学习方法,如经验模式分解结合最小二乘支持向量机以及离散傅里叶变换,已被广泛用作分类器,并用于自动发现疾病诊断的生物标志物。然而,现有方法效率较低,因为它们往往忽略了与分类器的相互作用。在本研究中,作者提出了一种两阶段优化方法,以有效地选择生物标志物并发现它们之间的相互作用。在第一阶段,使用粒子群优化(PSO)和差分进化(DE)来优化支持向量机递归特征消除算法的参数,然后使用动态贝叶斯网络预测两个时间点上生物标志物之间的时间关系。结果表明,分别由基于PSO和DE的方法选择的18个和25个生物标志物,准确率均为97.3%,F1分数分别为97.7和97.6%。分层分析显示,α-2-HS-糖蛋白是一个主导的枢纽基因,与包括纤维蛋白原α链在内的其他基因有多种相互作用,纤维蛋白原α链也是结直肠癌的潜在生物标志物。

相似文献

2
Robust edge-based biomarker discovery improves prediction of breast cancer metastasis.
BMC Bioinformatics. 2020 Sep 30;21(Suppl 14):359. doi: 10.1186/s12859-020-03692-2.
3
An Efficient Feature Selection Strategy Based on Multiple Support Vector Machine Technology with Gene Expression Data.
Biomed Res Int. 2018 Aug 30;2018:7538204. doi: 10.1155/2018/7538204. eCollection 2018.
5
Feature genes in metastatic breast cancer identified by MetaDE and SVM classifier methods.
Mol Med Rep. 2018 Mar;17(3):4281-4290. doi: 10.3892/mmr.2018.8398. Epub 2018 Jan 9.
6
Support vector machine classifier for prediction of the metastasis of colorectal cancer.
Int J Mol Med. 2018 Mar;41(3):1419-1426. doi: 10.3892/ijmm.2018.3359. Epub 2018 Jan 2.
9
BH-index: A predictive system based on serum biomarkers and ensemble learning for early colorectal cancer diagnosis in mass screening.
Comput Methods Programs Biomed. 2021 Nov;212:106494. doi: 10.1016/j.cmpb.2021.106494. Epub 2021 Oct 25.

引用本文的文献

1
Comprehensive review of Bayesian network applications in gastrointestinal cancers.
World J Clin Oncol. 2025 Jun 24;16(6):104299. doi: 10.5306/wjco.v16.i6.104299.
2
Use of Personalized Biomarkers in Metastatic Colorectal Cancer and the Impact of AI.
Cancers (Basel). 2022 Oct 3;14(19):4834. doi: 10.3390/cancers14194834.
5
Application of artificial intelligence to the diagnosis and therapy of colorectal cancer.
Am J Cancer Res. 2020 Nov 1;10(11):3575-3598. eCollection 2020.
7
The rapid endocytic uptake of fetuin-A by adherent tumor cells is mediated by Toll-like receptor 4 (TLR4).
FEBS Open Bio. 2020 Dec;10(12):2722-2732. doi: 10.1002/2211-5463.13008. Epub 2020 Nov 3.
8
Prediction of drug synergy score using ensemble based differential evolution.
IET Syst Biol. 2019 Feb;13(1):24-29. doi: 10.1049/iet-syb.2018.5023.
9
Histone-lysine N-methyltransferase SETD7 is a potential serum biomarker for colorectal cancer patients.
EBioMedicine. 2018 Nov;37:134-143. doi: 10.1016/j.ebiom.2018.10.036. Epub 2018 Oct 22.

本文引用的文献

1
A hybrid dynamic Bayesian network approach for modelling temporal associations of gene expressions for hypertension diagnosis.
Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:804-7. doi: 10.1109/EMBC.2014.6943713.
2
UniProt: a hub for protein information.
Nucleic Acids Res. 2015 Jan;43(Database issue):D204-12. doi: 10.1093/nar/gku989. Epub 2014 Oct 27.
3
Alpha 2HS-glycoprotein, a tumor-associated antigen (TAA) detected in Mexican patients with early-stage breast cancer.
J Proteomics. 2015 Jan 1;112:301-12. doi: 10.1016/j.jprot.2014.07.025. Epub 2014 Aug 10.
4
Significant survival impact of MACC1 polymorphisms in HER2 positive breast cancer patients.
Eur J Cancer. 2014 Aug;50(12):2134-41. doi: 10.1016/j.ejca.2014.05.007. Epub 2014 Jun 5.
6
MACC1 expression correlates with PFKFB2 and survival in hepatocellular carcinoma.
Asian Pac J Cancer Prev. 2014;15(2):999-1003. doi: 10.7314/apjcp.2014.15.2.999.
7
Functional identification of cancer-specific methylation of CDO1, HOXA9, and TAC1 for the diagnosis of lung cancer.
Clin Cancer Res. 2014 Apr 1;20(7):1856-64. doi: 10.1158/1078-0432.CCR-13-2109. Epub 2014 Jan 31.
8
Transcriptional profiling of pure fibrolamellar hepatocellular carcinoma reveals an endocrine signature.
Hepatology. 2014 Jun;59(6):2228-37. doi: 10.1002/hep.27018. Epub 2014 Apr 30.
9
Functional impact of colorectal cancer-associated mutations in the transcription factor E2F4.
Int J Oncol. 2013 Dec;43(6):2015-22. doi: 10.3892/ijo.2013.2131. Epub 2013 Oct 8.
10
A recent survey on colon cancer detection techniques.
IEEE/ACM Trans Comput Biol Bioinform. 2013 May-Jun;10(3):545-63. doi: 10.1109/TCBB.2013.84.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验