Suppr超能文献

基于小波变换和人工神经网络的肌电图信号压缩

Compression of EMG signals with wavelet transform and artificial neural networks.

作者信息

Berger Pedro de A, Nascimento Francisco A de O, do Carmo Jake C, da Rocha Adson F

机构信息

Department of Electrical Engineering, University of Brasilia, Brasilia 70910-900, Brazil.

出版信息

Physiol Meas. 2006 Jun;27(6):457-65. doi: 10.1088/0967-3334/27/6/003. Epub 2006 Mar 22.

Abstract

This paper presents a hybrid adaptive algorithm for the compression of surface electromyographic (S-EMG) signals recorded during isometric and/or isotonic contractions. This technique is useful for minimizing data storage and transmission requirements for applications where multiple channels with high bandwidth data are digitized, such as telemedicine applications. The compression algorithm proposed in this work uses a discrete wavelet transform for spectral decomposition and an intelligent dynamic bit allocation scheme implemented by an approach using the Kohonen layer, which improves the bit allocation for sections of the S-EMG with different characteristics. Finally, data and overhead information are packed by entropy coding. The results for the compression of isometric EMG signals showed that this algorithm has a better performance than standard wavelet compression algorithms presented in the literature (presenting a decrease of at least 5% in per cent residual difference (PRD) for the same compression ratio), and a performance that is comparable with the performance of algorithms based on an embedded zero-tree wavelet. For isotonic EMG signals, its performance is better than the performance of the algorithms based on embedded zero-tree wavelets (presenting a decrease in PRD of about 3.6% for the same compression ratios, in the useful compression range).

摘要

本文提出了一种混合自适应算法,用于压缩在等长和/或等张收缩过程中记录的表面肌电(S-EMG)信号。该技术对于将数字化多通道高带宽数据的应用(如远程医疗应用)中的数据存储和传输需求降至最低很有用。本文提出的压缩算法使用离散小波变换进行频谱分解,并采用一种基于Kohonen层的方法实现智能动态比特分配方案,该方案改进了对具有不同特征的S-EMG各部分的比特分配。最后,通过熵编码对数据和开销信息进行打包。等长肌电信号压缩结果表明,该算法比文献中提出的标准小波压缩算法具有更好的性能(在相同压缩比下,百分残留差异(PRD)至少降低5%),并且其性能与基于嵌入式零树小波的算法相当。对于等张肌电信号,在有用压缩范围内,其性能优于基于嵌入式零树小波的算法(在相同压缩比下,PRD降低约3.6%)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验