Suppr超能文献

一维和二维方法中的 S-EMG 信号压缩。

S-EMG Signal Compression in One-Dimensional and Two-Dimensional Approaches.

出版信息

IEEE J Biomed Health Inform. 2018 Jul;22(4):1104-1113. doi: 10.1109/JBHI.2017.2765922.

Abstract

This paper presents algorithms designed for one-dimensional (1-D) and 2-D surface electromyographic (S-EMG) signal compression. The 1-D approach is a wavelet transform based encoder applied to isometric and dynamic S-EMG signals. An adaptive estimation of the spectral shape is used to carry out dynamic bit allocation for vector quantization of transformed coefficients. Thus, an entropy coding is applied to minimize redundancy in quantized coefficient vector and to pack the data. In the 2-D approach algorithm, the isometric or dynamic S-EMG signal is properly segmented and arranged to build a 2-D representation. The high efficient video codec is used to encode the signal, using 16-bit-depth precision, all possible coding/prediction unit sizes, and all intra-coding modes. The encoders are evaluated with objective metrics, and a real signal data bank is used. Furthermore, performance comparisons are also shown in this paper, where the proposed methods have outperformed other efficient encoders reported in the literature.

摘要

本文提出了用于一维(1-D)和二维表面肌电(S-EMG)信号压缩的算法。1-D 方法是一种基于小波变换的编码器,应用于等长和动态 S-EMG 信号。使用自适应估计谱形状对变换系数进行矢量量化的动态比特分配。因此,应用熵编码来最小化量化系数向量中的冗余并打包数据。在 2-D 方法算法中,将等长或动态 S-EMG 信号适当地分段和排列,以构建二维表示。使用高效视频编解码器对信号进行编码,使用 16 位深度精度、所有可能的编码/预测单元大小和所有帧内编码模式。使用客观指标评估编码器,并使用实际信号数据库。此外,本文还展示了性能比较,其中所提出的方法优于文献中报道的其他高效编码器。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验