Suppr超能文献

空间分数阶平流扩散与反射边界条件。

Space-fractional advection-diffusion and reflective boundary condition.

作者信息

Krepysheva Natalia, Di Pietro Liliana, Néel Marie-Christine

机构信息

INRA d'Avignon, UMRA Climat Sol Environnement, Domaine Saint Paul--Site Agroparc, F-84914 Avignon Cedex 9, France.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Feb;73(2 Pt 1):021104. doi: 10.1103/PhysRevE.73.021104. Epub 2006 Feb 22.

Abstract

Anomalous diffusive transport arises in a large diversity of disordered media. Stochastic formulations in terms of continuous time random walks (CTRWs) with transition probability densities showing space- and/or time-diverging moments were developed to account for anomalous behaviors. A broad class of CTRWs was shown to correspond, on the macroscopic scale, to advection-diffusion equations involving derivatives of noninteger order. In particular, CTRWs with Lévy distribution of jumps and finite mean waiting time lead to a space-fractional equation that accounts for superdiffusion and involves a nonlocal integral-differential operator. Within this framework, we analyze the evolution of particles performing symmetric Lévy flights with respect to a fluid moving at uniform speed . The particles are restricted to a semi-infinite domain limited by a reflective barrier. We show that the introduction of the boundary condition induces a modification in the kernel of the nonlocal operator. Thus, the macroscopic space-fractional advection-diffusion equation obtained is different from that in an infinite medium.

摘要

反常扩散输运出现在各种各样的无序介质中。针对具有显示出空间和/或时间发散矩的跃迁概率密度的连续时间随机游走(CTRW),发展了随机公式来解释反常行为。已表明,在宏观尺度上,一类广泛的CTRW对应于涉及非整数阶导数的平流 - 扩散方程。特别地,具有跳跃的 Lévy 分布和有限平均等待时间的CTRW导致一个空间分数方程,该方程解释了超扩散现象,并且涉及一个非局部积分 - 微分算子。在此框架内,我们分析相对于以均匀速度移动的流体进行对称 Lévy 飞行的粒子的演化。粒子被限制在由反射屏障限定的半无限域中。我们表明,边界条件的引入会导致非局部算子的核发生修改。因此,得到的宏观空间分数平流 - 扩散方程与无限介质中的不同。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验