Suppr超能文献

共振发放模型中的首次通过时间密度

First passage time densities in resonate-and-fire models.

作者信息

Verechtchaguina T, Sokolov I M, Schimansky-Geier L

机构信息

Institute for Physics, Humboldt-University at Berlin, Newton Strasse 15, D-12489 Berlin, Germany.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Mar;73(3 Pt 1):031108. doi: 10.1103/PhysRevE.73.031108. Epub 2006 Mar 13.

Abstract

Motivated by the dynamics of resonant neurons we discuss the properties of the first passage time (FPT) densities for non-Markovian differentiable random processes. We start from an exact expression for the FPT density in terms of an infinite series of integrals over joint densities of level crossings, and consider different approximations based on truncation or on approximate summation of this series. Thus the first few terms of the series give good approximations for the FPT density on short times. For rapidly decaying correlations the decoupling approximations perform well in the whole time domain. As an example we consider resonate-and-fire neurons representing stochastic underdamped or moderately damped harmonic oscillators driven by white Gaussian or by Ornstein-Uhlenbeck noise. We show that approximations reproduce all qualitatively different structures of the FPT densities: from monomodal to multimodal densities with decaying peaks. The approximations work for the systems of whatever dimension and are especially effective for the processes with narrow spectral density, exactly when Markovian approximations fail.

摘要

受共振神经元动力学的启发,我们讨论了非马尔可夫可微随机过程的首次通过时间(FPT)密度的性质。我们从FPT密度的精确表达式出发,该表达式是关于水平交叉联合密度的无穷积分级数,并考虑基于该级数截断或近似求和的不同近似方法。因此,该级数的前几项在短时间内为FPT密度提供了良好的近似。对于快速衰减的相关性,解耦近似在整个时域中表现良好。作为一个例子,我们考虑代表由白高斯噪声或奥恩斯坦 - 乌伦贝克噪声驱动的随机欠阻尼或适度阻尼谐振子的发放 - 脉冲神经元。我们表明,近似方法再现了FPT密度的所有定性不同结构:从单峰到具有衰减峰值的多峰密度。这些近似方法适用于任何维度的系统,并且在马尔可夫近似失效时,对于具有窄谱密度的过程特别有效。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验