Suppr超能文献

分层网络中记忆检索的动态过程。

The dynamics of memory retrieval in hierarchical networks.

作者信息

Gu Yifan, Gong Pulin

机构信息

School of Physics and ARC Centre of Excellence for Integrative Brain Function, University of Sydney, NSW, 2006, Australia.

出版信息

J Comput Neurosci. 2016 Jun;40(3):247-68. doi: 10.1007/s10827-016-0595-7. Epub 2016 Feb 27.

Abstract

Memory retrieval is of central importance to a wide variety of brain functions. To understand the dynamic nature of memory retrieval and its underlying neurophysiological mechanisms, we develop a biologically plausible spiking neural circuit model, and demonstrate that free memory retrieval of sequences of events naturally arises from the model under the condition of excitation-inhibition (E/I) balance. Using the mean-field model of the spiking circuit, we gain further theoretical insights into how such memory retrieval emerges. We show that the spiking neural circuit model quantitatively reproduces several salient features of free memory retrieval, including its semantic proximity effect and log-normal distributions of inter-retrieval intervals. In addition, we demonstrate that our model can serve as a platform to examine memory retrieval deficits observed in neuropsychiatric diseases such as Parkinson's and Alzheimer's diseases. Furthermore, our model allows us to make novel and experimentally testable predictions, such as the prediction that there are long-range correlations in the sequences of retrieved items.

摘要

记忆检索对于多种脑功能至关重要。为了理解记忆检索的动态本质及其潜在的神经生理机制,我们构建了一个具有生物学合理性的脉冲神经回路模型,并证明在兴奋-抑制(E/I)平衡条件下,该模型自然会产生对事件序列的自由记忆检索。通过使用脉冲回路的平均场模型,我们对这种记忆检索如何出现有了进一步的理论见解。我们表明,脉冲神经回路模型定量地再现了自由记忆检索的几个显著特征,包括其语义邻近效应和检索间隔的对数正态分布。此外,我们证明我们的模型可以作为一个平台来研究在帕金森病和阿尔茨海默病等神经精神疾病中观察到的记忆检索缺陷。此外,我们的模型使我们能够做出新颖且可通过实验检验的预测,例如预测在检索项目序列中存在长程相关性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验