Suppr超能文献

将输入噪声映射到整合-触发神经元中的逃逸噪声:一种穿越水平的方法。

Mapping input noise to escape noise in integrate-and-fire neurons: a level-crossing approach.

机构信息

Institute of Mathematics, Technical University Berlin, 10623, Berlin, Germany.

Bernstein Center for Computational Neuroscience Berlin, 10115, Berlin, Germany.

出版信息

Biol Cybern. 2021 Oct;115(5):539-562. doi: 10.1007/s00422-021-00899-1. Epub 2021 Oct 19.

Abstract

Noise in spiking neurons is commonly modeled by a noisy input current or by generating output spikes stochastically with a voltage-dependent hazard rate ("escape noise"). While input noise lends itself to modeling biophysical noise processes, the phenomenological escape noise is mathematically more tractable. Using the level-crossing theory for differentiable Gaussian processes, we derive an approximate mapping between colored input noise and escape noise in leaky integrate-and-fire neurons. This mapping requires the first-passage-time (FPT) density of an overdamped Brownian particle driven by colored noise with respect to an arbitrarily moving boundary. Starting from the Wiener-Rice series for the FPT density, we apply the second-order decoupling approximation of Stratonovich to the case of moving boundaries and derive a simplified hazard-rate representation that is local in time and numerically efficient. This simplification requires the calculation of the non-stationary auto-correlation function of the level-crossing process: For exponentially correlated input noise (Ornstein-Uhlenbeck process), we obtain an exact formula for the zero-lag auto-correlation as a function of noise parameters, mean membrane potential and its speed, as well as an exponential approximation of the full auto-correlation function. The theory well predicts the FPT and interspike interval densities as well as the population activities obtained from simulations with colored input noise and time-dependent stimulus or boundary. The agreement with simulations is strongly enhanced across the sub- and suprathreshold firing regime compared to a first-order decoupling approximation that neglects correlations between level crossings. The second-order approximation also improves upon a previously proposed theory in the subthreshold regime. Depending on a simplicity-accuracy trade-off, all considered approximations represent useful mappings from colored input noise to escape noise, enabling progress in the theory of neuronal population dynamics.

摘要

神经元中的噪声通常通过噪声输入电流或通过具有电压相关逃逸率的随机输出尖峰来建模(“逃逸噪声”)。虽然输入噪声适合建模生物物理噪声过程,但现象学逃逸噪声在数学上更易于处理。我们使用可微高斯过程的水平穿越理论,推导出漏电积分和触发神经元中有色输入噪声和逃逸噪声之间的近似映射。这种映射需要有色噪声驱动的过阻尼布朗粒子相对于任意移动边界的首次穿越时间(FPT)密度。从 FPT 密度的 Wiener-Rice 级数开始,我们将 Stratonovich 的二阶解耦近似应用于移动边界的情况,并推导出简化的逃逸率表示形式,该表示形式在时间上是局部的,并且数值效率高。这种简化需要计算水平穿越过程的非平稳自相关函数:对于指数相关的输入噪声(Ornstein-Uhlenbeck 过程),我们得到了作为噪声参数、膜电位及其速度的函数的零滞后自相关的精确公式,以及全自相关函数的指数近似。该理论很好地预测了 FPT 和尖峰间隔密度以及从具有时变刺激或边界的有色输入噪声和时间的模拟中获得的群体活动。与仅考虑水平穿越之间的相关性的一阶解耦近似相比,该理论在亚阈值和超阈值发射范围内与模拟的吻合度大大提高。二阶近似也改进了亚阈值范围内以前提出的理论。根据简单性和准确性的权衡,所有考虑的近似都代表了从有色输入噪声到逃逸噪声的有用映射,从而为神经元群体动力学的理论提供了进展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/332c/8551127/7459e2486848/422_2021_899_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验