Vernizzi Graziano, Ribeca Paolo, Orland Henri, Zee A
Service de Physique Théorique, CEA Saclay, 91191 Gif-sur-Yvette Cedex, France.
Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Mar;73(3 Pt 1):031902. doi: 10.1103/PhysRevE.73.031902. Epub 2006 Mar 3.
We consider the folding of a self-avoiding homopolymer on a lattice, with saturating hydrogen bond interactions. Our goal is to numerically evaluate the statistical distribution of the topological genus of pseudoknotted configurations. The genus has been recently proposed for classifying pseudoknots (and their topological complexity) in the context of RNA folding. We compare our results on the distribution of the genus of pseudoknots, with the theoretical predictions of an existing combinatorial model for an infinitely flexible and stretchable homopolymer. We thus obtain that steric and geometric constraints considerably limit the topological complexity of pseudoknotted configurations, as it occurs for instance in real RNA molecules. We also analyze the scaling properties at large homopolymer length, and the genus distributions above and below the critical temperature between the swollen phase and the compact-globule phase, both in two and three dimensions.
我们考虑在晶格上具有饱和氢键相互作用的自回避均聚物的折叠。我们的目标是通过数值方法评估假结构型的拓扑亏格的统计分布。最近有人提出用亏格来对RNA折叠中的假结(及其拓扑复杂性)进行分类。我们将关于假结亏格分布的结果与一个针对无限柔性和可拉伸均聚物的现有组合模型的理论预测进行比较。由此我们得出,空间位阻和几何约束极大地限制了假结构型的拓扑复杂性,就像在实际RNA分子中所发生的那样。我们还分析了在均聚物长度较大时的标度性质,以及在二维和三维中,高于和低于膨胀相和紧密球相之间的临界温度时的亏格分布。