Clote Peter, Dobrev Stefan, Dotu Ivan, Kranakis Evangelos, Krizanc Danny, Urrutia Jorge
Department of Biology, Boston College, Chestnut Hill, MA 02467, USA.
J Math Biol. 2012 Dec;65(6-7):1337-57. doi: 10.1007/s00285-011-0493-6. Epub 2011 Dec 10.
Let S denote the set of (possibly noncanonical) base pairs {i, j } of an RNA tertiary structure; i.e. {i, j} ∈ S if there is a hydrogen bond between the ith and jth nucleotide. The page number of S, denoted π(S), is the minimum number k such that Scan be decomposed into a disjoint union of k secondary structures. Here, we show that computing the page number is NP-complete; we describe an exact computation of page number, using constraint programming, and determine the page number of a collection of RNA tertiary structures, for which the topological genus is known. We describe an approximation algorithm from which it follows that ω(S) ≤ π(S) ≤ ω(S) ・log n,where the clique number of S, ω(S), denotes the maximum number of base pairs that pairwise cross each other.
令(S)表示RNA三级结构中(可能是非标准的)碱基对({i, j})的集合;即如果第(i)个和第(j)个核苷酸之间存在氢键,则({i, j} \in S)。(S)的页码,记为(\pi(S)),是使得(S)可分解为(k)个二级结构的不相交并集的最小整数(k)。在此,我们证明计算页码是NP完全问题;我们描述了一种使用约束编程精确计算页码的方法,并确定了一组已知拓扑亏格的RNA三级结构的页码。我们描述了一种近似算法,由此可得(\omega(S) \leq \pi(S) \leq \omega(S) \cdot \log n),其中(S)的团数(\omega(S))表示相互交叉的碱基对的最大数量。