Suppr超能文献

Photodecomposition of peroxides containing a 1,4-bis(phenylethynyl)benzene chromophore.

作者信息

Polyansky Dmitry E, Danilov Evgeny O, Voskresensky Sergey V, Rodgers Michael A J, Neckers Douglas C

机构信息

Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403, USA.

出版信息

J Phys Chem A. 2006 Apr 20;110(15):4969-78. doi: 10.1021/jp055078m.

Abstract

The photodecomposition dynamics of 1,4-bis(2-[4-tert-butylperoxycarbonylphenyl]ethynyl)benzene (1) have been compared with those of model compounds in the picosecond and nanosecond time domains by various photophysical techniques. Ultrafast visible transient absorption spectrometry revealed the singlet excited state of 1,4-bis(4-phenylethynyl)benzene (BPB) depopulates radiatively with a rate of 1.75 x 10(9) s(-1) and 95% efficiency. Phenyl ester moieties attached to the BPB core accelerate intersystem crossing (k = 2.8 x 10(8) s(-1)) and reduce the fluorescence quantum yield (phi(FL) = 0.82). The peroxide oxygen-oxygen bond of 1 cleaves (k = 3.6 x 10(11) s(-1)) directly from the singlet excited state (60% efficiency) causing a highly reduced fluorescence yield and leading to formation of aroyloxyl radicals. The next reaction step involves decarboxylation of the aroyloxyl radicals. Transient absorption signals in the MID IR region correspond to CO2 with the formation rate (2.5 x 10(6) s(-1)) as measured by nanosecond transient IR experiments. The transient IR spectra of the excited state of BPB, as well as of the aroyloxyl radical, evidenced a red shift in the acetylene triple bond absorption indicative of a decrease in the bond order. This clearly shows that delocalization of excitation energy over the BPB chromophore induces significant structural changes. The proposed mechanism is based on the rates of photophysical and photochemical channels and involves an additional population channel of the BPB triplet excited state from the upper singlet states.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验