Suppr超能文献

向人类学习:人脸识别的计算建模

Learning from humans: computational modeling of face recognition.

作者信息

Wallraven Christian, Schwaninger Adrian, Bülthoff Heinrich H

机构信息

Max Planck Institute for Biological Cybernetics, Tübingen, Germany.

出版信息

Network. 2005 Dec;16(4):401-18. doi: 10.1080/09548980500508844.

Abstract

In this paper, we propose a computational architecture of face recognition based on evidence from cognitive research. Several recent psychophysical experiments have shown that humans process faces by a combination of configural and component information. Using an appearance-based implementation of this architecture based on low-level features and their spatial relations, we were able to model aspects of human performance found in psychophysical studies. Furthermore, results from additional computational recognition experiments show that our framework is able to achieve excellent recognition performance even under large view rotations. Our interdisciplinary study is an example of how results from cognitive research can be used to construct recognition systems with increased performance. Finally, our modeling results also make new experimental predictions that will be tested in further psychophysical studies, thus effectively closing the loop between psychophysical experimentation and computational modeling.

摘要

在本文中,我们基于认知研究的证据提出了一种人脸识别的计算架构。最近的几项心理物理学实验表明,人类通过构型信息和成分信息的组合来处理面孔。利用基于低级特征及其空间关系的该架构的基于外观的实现方式,我们能够对面心理物理学研究中发现的人类表现的各个方面进行建模。此外,额外的计算识别实验结果表明,即使在大视角旋转的情况下,我们的框架也能够实现出色的识别性能。我们的跨学科研究是一个例子,展示了认知研究的结果如何用于构建性能更高的识别系统。最后,我们的建模结果还做出了新的实验预测,这些预测将在进一步的心理物理学研究中得到检验,从而有效地闭合心理物理学实验与计算建模之间的循环。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验