Lamerz Anne-Christin, Haselhorst Thomas, Bergfeld Anne K, von Itzstein Mark, Gerardy-Schahn Rita
Zelluläre Chemie, Zentrum Biochemie, Medizinische Hochschule Hannover, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany.
J Biol Chem. 2006 Jun 16;281(24):16314-22. doi: 10.1074/jbc.M600076200. Epub 2006 Apr 12.
The dense glycocalyx surrounding the protozoan parasite Leishmania is an essential virulence factor. It protects the parasite from hostile environments in the sandfly vector and mammalian host and supports steps of development and invasion. Therefore, new therapeutic concepts concentrate on disturbing glycocalyx biosynthesis. Deletion of genes involved in the metabolism of galactose and mannose have been shown to drastically reduce Leishmania virulence. Here we report the identification of Leishmania major UDP-glucose pyrophosphorylase (UGP). UGP catalyzes the formation of UDP-glucose from glucose 1-phosphate and UTP. This activation step enables glucose to enter metabolic pathways and is crucial for the activation of galactose. UDP-galactose is made from UDP-glucose by nucleotide-donor transfer to galactose 1-phosphate or by epimerization of the glucose moiety. Isolated in a complementation cloning approach, the activity of L. major UGP was proven in vitro. Moreover, purified protein was used to investigate enzyme kinetics, quaternary organization, and binding of ligands. Whereas sequestration by oligomerization is a known regulatory mechanism for eukaryotic UGPs, the recombinant as well as native L. major UGP migrated as monomer in size exclusion chromatography and in accord with this showed simple Michaelis-Menten kinetics toward all substrates. In saturation transfer difference (STD)-NMR studies, we clearly demonstrated that the molecular geometry at position 4 of glucose is responsible for substrate specificity. Furthermore, the gamma-phosphate group of UTP is essential for binding and for induction of the open conformation, which then allows entry of glucose 1-phosphate. Our data provide the first direct proof for the ordered bi-bi mechanism suggested in earlier studies.
原生动物寄生虫利什曼原虫周围致密的糖萼是一种重要的毒力因子。它保护寄生虫免受沙蝇载体和哺乳动物宿主中恶劣环境的影响,并支持其发育和入侵步骤。因此,新的治疗理念集中在干扰糖萼生物合成上。已证明,参与半乳糖和甘露糖代谢的基因缺失会大幅降低利什曼原虫的毒力。在此,我们报告了大利什曼原虫尿苷二磷酸葡萄糖焦磷酸化酶(UGP)的鉴定。UGP催化由1-磷酸葡萄糖和三磷酸尿苷形成尿苷二磷酸葡萄糖。这一激活步骤使葡萄糖能够进入代谢途径,对半乳糖的激活至关重要。尿苷二磷酸半乳糖由尿苷二磷酸葡萄糖通过核苷酸供体转移至1-磷酸半乳糖或通过葡萄糖部分的差向异构化形成。通过互补克隆方法分离得到的大利什曼原虫UGP的活性在体外得到了证实。此外,纯化的蛋白被用于研究酶动力学、四级结构和配体结合。虽然寡聚化隔离是真核UGP已知的一种调节机制,但重组的以及天然的大利什曼原虫UGP在尺寸排阻色谱中均以单体形式迁移,并且与此一致,对所有底物均表现出简单的米氏动力学。在饱和转移差(STD)-核磁共振研究中,我们清楚地证明葡萄糖4位的分子几何结构决定了底物特异性。此外,三磷酸尿苷的γ-磷酸基团对于结合和诱导开放构象至关重要,开放构象随后允许1-磷酸葡萄糖进入。我们的数据为早期研究中提出的有序双底物双产物机制提供了首个直接证据。