Suppr超能文献

对来自[具体来源未给出]的必需天然UDP-葡萄糖焦磷酸化酶的冷冻电镜分析揭示了活性调节和功能的关键构象。

CryoEM analysis of the essential native UDP-glucose pyrophosphorylase from reveals key conformations for activity regulation and function.

作者信息

Han Xu, D'Angelo Cecilia, Otamendi Ainara, Cifuente Javier O, de Astigarraga Elisa, Ochoa-Lizarralde Borja, Grininger Martin, Routier Francoise H, Guerin Marcelo E, Fuehring Jana, Etxebeste Oier, Connell Sean R

机构信息

Structural Biology of Cellular Machines Laboratory, Biocruces Bizkaia Health Research Institute, Cruces University Hospital , Barakaldo, Bizkaia, Spain.

Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA) , Derio, Spain.

出版信息

mBio. 2023 Aug 31;14(4):e0041423. doi: 10.1128/mbio.00414-23. Epub 2023 Jul 6.

Abstract

Invasive aspergillosis is one of the most serious clinical invasive fungal infections, resulting in a high case fatality rate among immunocompromised patients. The disease is caused by saprophytic molds in the genus , including , the most significant pathogenic species. The fungal cell wall, an essential structure mainly composed of glucan, chitin, galactomannan, and galactosaminogalactan, represents an important target for the development of antifungal drugs. UDP (uridine diphosphate)-glucose pyrophosphorylase (UGP) is a central enzyme in the metabolism of carbohydrates that catalyzes the biosynthesis of UDP-glucose, a key precursor of fungal cell wall polysaccharides. Here, we demonstrate that the function of UGP is vital for (UGP). To understand the molecular basis of UGP function, we describe a cryoEM structure (global resolution of 3.5 Å for the locally refined subunit and 4 Å for the octameric complex) of a native UGP. The structure reveals an octameric architecture with each subunit comprising an N-terminal α-helical domain, a central catalytic glycosyltransferase A-like (GT-A-like) domain, and a C-terminal (CT) left-handed β-helix oligomerization domain. UGP displays unprecedented conformational variability between the CT oligomerization domain and the central GT-A-like catalytic domain. In combination with activity measurements and bioinformatics analysis, we unveil the molecular mechanism of substrate recognition and specificity for UGP. Altogether, our study not only contributes to understanding the molecular mechanism of catalysis/regulation of an important class of enzymes but also provides the genetic, biochemical, and structural groundwork for the future exploitation of UGP as a potential antifungal target. IMPORTANCE Fungi cause diverse diseases in humans, ranging from allergic syndromes to life-threatening invasive diseases, together affecting more than a billion people worldwide. Increasing drug resistance in species represents an emerging global health threat, making the design of antifungals with novel mechanisms of action a worldwide priority. The cryoEM structure of UDP (uridine diphosphate)-glucose pyrophosphorylase (UGP) from the filamentous fungus reveals an octameric architecture displaying unprecedented conformational variability between the C-terminal oligomerization domain and the central glycosyltransferase A-like catalytic domain in the individual protomers. While the active site and oligomerization interfaces are more highly conserved, these dynamic interfaces include motifs restricted to specific clades of filamentous fungi. Functional study of these motifs could lead to the definition of new targets for antifungals inhibiting UGP activity and, thus, the architecture of the cell wall of filamentous fungal pathogens.

摘要

侵袭性曲霉病是最严重的临床侵袭性真菌感染之一,在免疫功能低下的患者中病死率很高。该疾病由曲霉属的腐生霉菌引起,其中烟曲霉是最重要的致病菌种。真菌细胞壁是一种主要由葡聚糖、几丁质、半乳甘露聚糖和半乳糖胺半乳聚糖组成的重要结构,是抗真菌药物开发的重要靶点。尿苷二磷酸(UDP)-葡萄糖焦磷酸化酶(UGP)是碳水化合物代谢中的一种核心酶,催化UDP-葡萄糖的生物合成,UDP-葡萄糖是真菌细胞壁多糖的关键前体。在此,我们证明UGP的功能对烟曲霉至关重要。为了解UGP功能的分子基础,我们描述了天然UGP的冷冻电镜结构(局部精制亚基的整体分辨率为3.5 Å,八聚体复合物的整体分辨率为4 Å)。该结构揭示了一种八聚体结构,每个亚基包括一个N端α螺旋结构域、一个中央催化糖基转移酶A样(GT-A样)结构域和一个C端(CT)左手β螺旋寡聚化结构域。UGP在CT寡聚化结构域和中央GT-A样催化结构域之间表现出前所未有的构象变异性。结合活性测量和生物信息学分析,我们揭示了UGP底物识别和特异性的分子机制。总之,我们的研究不仅有助于理解一类重要酶的催化/调节分子机制,还为未来将UGP开发为潜在抗真菌靶点提供了遗传学、生物化学和结构基础。重要性真菌在人类中可引发多种疾病,从过敏综合征到危及生命的侵袭性疾病,全球共有超过10亿人受其影响。真菌物种中耐药性的增加是一种新出现的全球健康威胁,因此设计具有新作用机制的抗真菌药物成为全球优先事项。丝状真菌烟曲霉的UDP(尿苷二磷酸)-葡萄糖焦磷酸化酶(UGP)的冷冻电镜结构揭示了一种八聚体结构,在各个原体的C端寡聚化结构域和中央糖基转移酶A样催化结构域之间表现出前所未有的构象变异性。虽然活性位点和寡聚化界面更为保守,但这些动态界面包括仅限于丝状真菌特定进化枝的基序。对这些基序的功能研究可能会确定抑制UGP活性的抗真菌药物的新靶点,从而确定丝状真菌病原体细胞壁的结构。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b45/10470519/1be4811417b2/mbio.00414-23.f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验