Stoop R, Kern A, Göpfert M C, Smirnov D A, Dikanev T V, Bezrucko B P
Institute of Neuroinformatics, University/ETH Zürich, Winterthurerstr. 190, 8057, Zurich, Switzerland.
Eur Biophys J. 2006 Aug;35(6):511-6. doi: 10.1007/s00249-006-0059-5. Epub 2006 Apr 13.
The antennal hearing organs of the fruit fly Drosophila melanogaster boost their sensitivity by an active mechanical process that, analogous to the cochlear amplifier of vertebrates, resides in the motility of mechanosensory cells. This process nonlinearly improves the sensitivity of hearing and occasionally gives rise to self-sustained oscillations in the absence of sound. Time series analysis of self-sustained oscillations now unveils that the underlying dynamical system is well described by a generalization of the van-der-Pol oscillator. From the dynamic equations, the underlying amplification dynamics can explicitly be derived. According to the model, oscillations emerge from a combination of negative damping, which reflects active amplification, and a nonlinear restoring force that dictates the amplitude of the oscillations. Hence, active amplification in fly hearing seems to rely on the negative damping mechanism initially proposed for the cochlear amplifier of vertebrates.
果蝇黑腹果蝇的触角听觉器官通过一个活跃的机械过程提高其灵敏度,该过程类似于脊椎动物的耳蜗放大器,存在于机械感觉细胞的运动中。这个过程非线性地提高了听觉的灵敏度,并且在没有声音的情况下偶尔会产生自持振荡。对自持振荡的时间序列分析现在揭示,潜在的动力学系统可以用范德波尔振荡器的推广很好地描述。从动力学方程中,可以明确推导出潜在的放大动力学。根据该模型,振荡源于负阻尼(反映活跃放大)和决定振荡幅度的非线性恢复力的组合。因此,果蝇听觉中的活跃放大似乎依赖于最初为脊椎动物的耳蜗放大器提出的负阻尼机制。