Agrawal Paras M, Raff Lionel M, Hagan Martin T, Komanduri Ranga
Mechanical and Aerospace Engineering, Oklahoma State University, Stillwater, Oklahoma 74078, USA.
J Chem Phys. 2006 Apr 7;124(13):134306. doi: 10.1063/1.2185638.
The neural network (NN) procedure to interpolate ab initio data for the purpose of molecular dynamics (MD) simulations has been tested on the SiO(2) system. Unlike other similar NN studies, here, we studied the dissociation of SiO(2) without the initial use of any empirical potential. During the dissociation of SiO(2) into Si+O or Si+O(2), the spin multiplicity of the system changes from singlet to triplet in the first reaction and from singlet to pentet in the second. This paper employs four potential surfaces. The first is a NN fit [NN(STP)] to a database comprising the lowest of the singlet, triplet, and pentet energies obtained from density functional calculations in 6673 nuclear configurations. The other three potential surfaces are obtained from NN fits to the singlet, triplet, and pentet-state energies. The dissociation dynamics on the singlet-state and NN(STP) surfaces are reported. The results obtained using the singlet surface correspond to those expected if the reaction were to occur adiabatically. The dynamics on the NN(STP) surface represent those expected if the reaction follows a minimum-energy pathway. This study on a small system demonstrates the application of NNs for MD studies using ab initio data when the spin multiplicity of the system changes during the dissociation process.
为了进行分子动力学(MD)模拟,用于插值从头算数据的神经网络(NN)程序已在SiO(2)系统上进行了测试。与其他类似的神经网络研究不同,在这里,我们在不最初使用任何经验势的情况下研究了SiO(2)的解离。在SiO(2)分解为Si+O或Si+O(2)的过程中,系统的自旋多重性在第一个反应中从单重态变为三重态,在第二个反应中从单重态变为五重态。本文采用了四个势能面。第一个是对包含从6673个核构型的密度泛函计算中获得的单重态、三重态和五重态能量中最低值的数据库的神经网络拟合[NN(STP)]。其他三个势能面是通过对单重态、三重态和五重态能量的神经网络拟合获得的。报告了单重态表面和NN(STP)表面上的解离动力学。使用单重态表面获得的结果与反应绝热发生时预期的结果一致。NN(STP)表面上的动力学代表了反应遵循最小能量路径时预期的动力学。对一个小系统的这项研究展示了在系统解离过程中自旋多重性发生变化时,神经网络在使用从头算数据进行MD研究中的应用。