Parkinson John F
Department of Immunology, Berlex Biosciences, Richmond, California 94804, USA.
Inflamm Allergy Drug Targets. 2006 Apr;5(2):91-106. doi: 10.2174/187152806776383125.
Lipoxin A4 (LXA4) and lipoxin B4 (LXB4) were first identified in 1984 by Serhan and colleagues as 5- and 15-lipoxygenase interaction products of activated leukocytes. Endogenous transcellular biosynthesis of LXA4 and LXB4 occurs via interaction of leukocytes with epithelium, endothelium or platelets. Acetylation of cyclooxygenase-2 (COX-2) by aspirin can trigger 15-epi-LXA4 (ATL) biosynthesis. Elucidating the pharmacological actions of lipoxins and ATL was facilitated by total synthesis of LXA4 in 1988 by Nicolaou and colleagues. In 1994, Fiore and colleagues used [3H]-LXA4 to identify the cDNA for a human G-protein-coupled, high affinity LXA4 and ATL receptor (ALX-R/FPRL-1), providing the first hints for the molecular basis of lipoxin actions. The recognition that lipoxins and ATL undergo rapid, prostaglandin dehydrogenase (PGDH)-mediated metabolic inactivation led do the design and synthesis of first-generation PGDH-resistant LXA4, LXB4 and ATL analogs in 1995-1998 by Serhan, Petasis and colleagues. These relatively stable pharmacological agents, together with myeloid-specific ALX-R-expressing transgenic mice, have provided powerful tools to explore lipoxin functions in vivo. Here we briefly review the substantial body of evidence supporting the lipoxin --> ALX-R pathway as a novel and potent mechanism for preventing/resolving acute inflammation. Emphasis will also be placed on recent findings that lipoxins play new roles in "immunomodulation" via regulation of macrophage, dendritic cell, and T-lymphocyte effector functions in the setting of polarized T-helper cell responses (Th1 and Th2). These studies suggest roles for lipoxins as novel regulators of allergy and adaptive immunity and that lipoxins may have therapeutic potential in chronic immune disorders.
1984年,塞尔汉及其同事首次将脂氧素A4(LXA4)和脂氧素B4(LXB4)鉴定为活化白细胞的5-脂氧合酶和15-脂氧合酶相互作用产物。LXA4和LXB4的内源性跨细胞生物合成通过白细胞与上皮细胞、内皮细胞或血小板的相互作用发生。阿司匹林对环氧合酶-2(COX-2)的乙酰化可触发15-表-LXA4(ATL)的生物合成。1988年,尼科劳及其同事成功全合成LXA4,这为阐明脂氧素和ATL的药理作用提供了便利。1994年,菲奥雷及其同事利用[3H]-LXA4鉴定出一种人类G蛋白偶联的高亲和力LXA4和ATL受体(ALX-R/FPRL-1)的cDNA,为脂氧素作用的分子基础提供了首个线索。由于认识到脂氧素和ATL会经历由前列腺素脱氢酶(PGDH)介导的快速代谢失活,塞尔汉、佩塔西斯及其同事在1995年至1998年设计并合成了第一代抗PGDH的LXA4、LXB4和ATL类似物。这些相对稳定的药理制剂,连同表达髓系特异性ALX-R的转基因小鼠,为在体内探索脂氧素功能提供了有力工具。在此,我们简要回顾大量证据,这些证据支持脂氧素→ALX-R途径是预防/解决急性炎症的一种新的有效机制。同时,我们也将重点关注近期的研究发现,即在极化的辅助性T细胞反应(Th1和Th2)背景下,脂氧素通过调节巨噬细胞、树突状细胞和T淋巴细胞效应功能,在“免疫调节”中发挥新作用。这些研究表明脂氧素作为过敏和适应性免疫的新型调节因子具有潜在作用,并且脂氧素可能在慢性免疫疾病中具有治疗潜力。