Santos Janine Hertzog, Meyer Joel N, Van Houten Bennett
Laboratory of Molecular Genetics, National Institute of Environmental and Health Sciences/NIH, 111 Alexander Drive, Research Triangle Park, NC 27709, USA.
Hum Mol Genet. 2006 Jun 1;15(11):1757-68. doi: 10.1093/hmg/ddl098. Epub 2006 Apr 13.
We have previously shown that the protein subunit of telomerase, hTERT, has a bonafide N-terminal mitochondrial targeting sequence, and that ectopic hTERT expression in human cells correlated with increase in mtDNA damage after hydrogen peroxide treatment. In this study, we show, using a loxP hTERT construct, that this increase in mtDNA damage following hydrogen peroxide exposure is dependent on the presence of hTERT itself. Further experiments using a dominant negative hTERT mutant shows that telomerase must be catalytically active to mediate the increase in mtDNA damage. Etoposide, but not methylmethanesulfate, also promotes mtDNA lesions in cells expressing active hTERT, indicating genotoxic specificity in this response. Fibroblasts expressing hTERT not only show a approximately 2-fold increase in mtDNA damage after oxidative stress but also suffer a 10-30-fold increase in apoptotic cell death as assayed by Annexin-V staining, caspase-3 activation and PARP cleavage. Mutations to the N-terminal mitochondrial leader sequence causes a complete loss of mitochondrial targeting without affecting catalytic activity. Cells carrying this mutated hTERT not only have significantly reduced levels of mtDNA damage following hydrogen peroxide treatment, but strikingly also do not shown any loss of viability or cell growth. Thus, localization of hTERT to the mitochondria renders cells more susceptible to oxidative stress-induced mtDNA damage and subsequent cell death, whereas nuclear-targeted hTERT, in the absence of mitochondrial localization, is associated with diminished mtDNA damage, increased cell survival and protection against cellular senescence.
我们之前已经表明,端粒酶的蛋白质亚基hTERT具有一个真正的N端线粒体靶向序列,并且在过氧化氢处理后,人细胞中异位hTERT表达与线粒体DNA(mtDNA)损伤增加相关。在本研究中,我们使用一个loxP hTERT构建体表明,过氧化氢暴露后mtDNA损伤的这种增加依赖于hTERT自身的存在。使用显性负性hTERT突变体的进一步实验表明,端粒酶必须具有催化活性才能介导mtDNA损伤的增加。依托泊苷而非甲基磺酸甲酯,也能促进表达活性hTERT的细胞中的mtDNA损伤,表明这种反应具有遗传毒性特异性。通过Annexin-V染色、caspase-3激活和PARP裂解检测,表达hTERT的成纤维细胞不仅在氧化应激后mtDNA损伤增加约2倍,而且凋亡细胞死亡增加10 - 30倍。N端线粒体前导序列的突变导致线粒体靶向完全丧失,而不影响催化活性。携带这种突变hTERT的细胞不仅在过氧化氢处理后mtDNA损伤水平显著降低,而且显著地也没有显示出任何活力丧失或细胞生长受影响。因此,hTERT定位于线粒体使细胞更容易受到氧化应激诱导的mtDNA损伤及随后的细胞死亡,而在没有线粒体定位的情况下,核靶向的hTERT与mtDNA损伤减少、细胞存活增加以及防止细胞衰老相关。