Olsson Mats H M, Warshel Arieh
Department of Chemistry, University of Southern California, 3620 McClintock Avenue, SGM418, Los Angeles, CA 90089-1062, USA.
Proc Natl Acad Sci U S A. 2006 Apr 25;103(17):6500-5. doi: 10.1073/pnas.0510860103. Epub 2006 Apr 13.
Gaining a detailed understanding of the proton-pumping process in cytochrome c oxidase (COX) is one of the challenges of modern biophysics. Recent mutation experiments have highlighted this challenge by showing that a single mutation (the N139D mutation) blocks the overall pumping while continuing to channel protons to the binuclear center without inhibiting the oxidase activity. Rationalizing this result has been a major problem because the mutation is quite far from E286, which is believed to serve as the branching point for the proton transport in the pumping process. In the absence of a reasonable explanation for this important observation, we have developed a Monte Carlo simulation method that can convert mutation and structural information to pathways for proton translocation and simulate the pumping process in COX on a millisecond and even subsecond time scale. This tool allows us to reproduce and propose a possible explanation to the effect of the N139D mutation and to offer a consistent model for the origin of the "valve effect" in COX, which is crucial for maintaining uphill proton pumping. Furthermore, obtaining the first structure-based simulation of proton pumping in COX, or in any other protein, indicates that our approach should provide a powerful tool for verification of mechanistic hypotheses about the action of proton transport proteins.
深入了解细胞色素c氧化酶(COX)中的质子泵浦过程是现代生物物理学面临的挑战之一。最近的突变实验凸显了这一挑战,实验表明,单个突变(N139D突变)会阻断整体泵浦过程,同时在不抑制氧化酶活性的情况下继续将质子输送到双核中心。解释这一结果一直是个主要问题,因为该突变距离E286相当远,而E286被认为是泵浦过程中质子运输的分支点。由于缺乏对这一重要观察结果的合理解释,我们开发了一种蒙特卡罗模拟方法,该方法可以将突变和结构信息转化为质子转运途径,并在毫秒甚至亚秒时间尺度上模拟COX中的泵浦过程。这个工具使我们能够重现并提出对N139D突变效应的一种可能解释,并为COX中“阀门效应”的起源提供一个一致的模型,而“阀门效应”对于维持质子向上泵浦至关重要。此外,获得COX或任何其他蛋白质中基于结构的首次质子泵浦模拟表明,我们的方法应为验证关于质子转运蛋白作用的机制假说提供一个强大的工具。