Lerner Jeremy M
LightForm Inc, Hillsborough, NJ 08844, USA.
Cytometry A. 2006 Aug 1;69(8):712-34. doi: 10.1002/cyto.a.20242.
Over the last 2 years there has been a dramatic increase in the number of bioscience laboratories using wavelength dispersive spectroscopy to study in vivo, in situ fluorescence. Transforming spectral information into an image provides a graphic means of mapping localized ionic, molecular, and protein-protein interactions. Spectroscopy also enables fluorophores with overlapping spectral features to be delineation. In this study, we provide the tools that a researcher needs to put into perspective instrumental contributions to a reported spectrum in order to gain greater understanding of the natural emission of the sample. We also show how to deduce the basic capabilities of a spectral confocal system. Finally, we show how to determine the true spectral bandwidth of an object, the illuminated area of a laser-excited object, and what is needed to optimize light throughput.
在过去两年中,使用波长色散光谱法研究体内、原位荧光的生物科学实验室数量急剧增加。将光谱信息转换为图像可提供一种绘制局部离子、分子和蛋白质-蛋白质相互作用图谱的图形方法。光谱学还能够区分具有重叠光谱特征的荧光团。在本研究中,我们提供了研究人员所需的工具,以便正确看待仪器对所报告光谱的贡献,从而更深入地了解样品的自然发射。我们还展示了如何推断光谱共聚焦系统的基本能力。最后,我们展示了如何确定物体的真实光谱带宽、激光激发物体的照明面积,以及优化光通量所需的条件。