Thongrom Sukrit, Pengphorm Panuwat, Wongarrayapanich Surachet, Prasit Apirat, Kanjanasakul Chanisa, Rujopakarn Wiphu, Poshyachinda Saran, Daengngam Chalongrat, Unsuree Nawapong
Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai District, Songkhla 90110, Thailand.
National Astronomical Research Institute of Thailand (Public Organization), Mae Rim District, Chiang Mai 50180, Thailand.
Sensors (Basel). 2025 Jun 10;25(12):3631. doi: 10.3390/s25123631.
Hyperspectral imaging (HSI) is an effective technique for material identification and classification, utilizing spectral signatures with applications in remote sensing, environmental monitoring, and allied disciplines. Despite its potential, the broader adoption of HSI technology is hindered by challenges related to compactness, affordability, and durability, exacerbated by the absence of standardized protocols for developing practical hyperspectral cameras. This study introduces a comprehensive framework for developing a compact, cost-effective, and robust hyperspectral camera, employing commercial off-the-shelf (COTS) components and a volume phase holographic (VPH) grism. The use of COTS components reduces development time and manufacturing costs while maintaining adequate performance, thereby improving accessibility for researchers and engineers. The incorporation of a VPH grism enables an on-axis optical design, enhancing compactness, reducing alignment sensitivity, and improving system robustness. The proposed framework encompasses spectrograph design, including optical simulations and tolerance analysis conducted in ZEMAX OpticStudio, alongside assembly procedures, performance assessment, and hyperspectral image acquisition via a pushbroom scanning approach, all integrated into a structured, step-by-step workflow. The resulting prototype, housed in an aluminum enclosure, operates within the 420-830 nm wavelength range, achieving a spectral resolution of 2 nm across 205 spectral bands. It effectively differentiates vegetation, water, and built structures, resolves atmospheric absorption features, and demonstrates the ability to distinguish materials in low-light conditions, providing a scalable and practical advancement in HSI technology.
高光谱成像(HSI)是一种用于材料识别和分类的有效技术,它利用光谱特征,应用于遥感、环境监测及相关学科。尽管具有潜力,但HSI技术的更广泛应用受到与紧凑性、可承受性和耐用性相关的挑战的阻碍,而缺乏开发实用高光谱相机的标准化协议则使这些挑战更加严峻。本研究介绍了一个用于开发紧凑、经济高效且坚固的高光谱相机的综合框架,该框架采用商用现货(COTS)组件和体相位全息(VPH)光栅。使用COTS组件可减少开发时间和制造成本,同时保持足够的性能,从而提高研究人员和工程师的可及性。VPH光栅的纳入实现了同轴光学设计,增强了紧凑性,降低了对准灵敏度,并提高了系统的鲁棒性。所提出的框架包括光谱仪设计,其中包括在ZEMAX OpticStudio中进行的光学模拟和公差分析,以及组装程序、性能评估和通过推扫扫描方法进行的高光谱图像采集,所有这些都集成到一个结构化的、逐步的工作流程中。最终的原型机安装在一个铝制外壳中,在420 - 830纳米波长范围内工作,在205个光谱波段上实现了2纳米的光谱分辨率。它能够有效区分植被、水和建筑结构,解析大气吸收特征,并展示了在低光照条件下区分材料的能力,为HSI技术提供了可扩展且实用的进展。