Suppr超能文献

使用两级模型进行二硫键连接预测,准确率达70%。

Disulfide connectivity prediction with 70% accuracy using two-level models.

作者信息

Chen Bo-Juen, Tsai Chi-Hung, Chan Chen-hsiung, Kao Cheng-Yan

机构信息

Department of Computer Science and Information Engineering, National Taiwan University, Taipei, Republic of China.

出版信息

Proteins. 2006 Jul 1;64(1):246-52. doi: 10.1002/prot.20972.

Abstract

Disulfide bridges stabilize protein structures covalently and play an important role in protein folding. Predicting disulfide connectivity precisely helps towards the solution of protein structure prediction. Previous methods for disulfide connectivity prediction either infer the bonding potential of cysteine pairs or rank alternative disulfide bonding patterns. As a result, these methods encode data according to cysteine pairs (pair-wise) or disulfide bonding patterns (pattern-wise). However, using either encoding scheme alone cannot fully utilize the local and global information of proteins, so the accuracies of previous methods are limited. In this work, we propose a novel two-level framework to predict disulfide connectivity. With this framework, both the pair-wise and pattern-wise encoding schemes are considered. Our models were validated on the datasets derived from SWISS-PROT 39 and 43, and the results demonstrate that our models can combine both local and global information. Compared to previous methods, significant improvements were obtained by our models. Our work may also provide insights to further improvements of disulfide connectivity prediction and increase its applicability in protein structure analysis and prediction.

摘要

二硫键以共价方式稳定蛋白质结构,并在蛋白质折叠中发挥重要作用。精确预测二硫键连接性有助于解决蛋白质结构预测问题。先前用于二硫键连接性预测的方法要么推断半胱氨酸对的结合潜力,要么对替代的二硫键结合模式进行排序。因此,这些方法根据半胱氨酸对(成对)或二硫键结合模式(模式)对数据进行编码。然而,单独使用任何一种编码方案都不能充分利用蛋白质的局部和全局信息,因此先前方法的准确性受到限制。在这项工作中,我们提出了一种新颖的两级框架来预测二硫键连接性。通过这个框架,成对和模式编码方案都被考虑在内。我们的模型在源自SWISS-PROT 39和43的数据集上进行了验证,结果表明我们的模型可以结合局部和全局信息。与先前的方法相比,我们的模型取得了显著的改进。我们的工作也可能为进一步改进二硫键连接性预测提供见解,并提高其在蛋白质结构分析和预测中的适用性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验