Jazayeri Mehrdad, Movshon J Anthony
Center for Neural Science, 4 Washington Place, Room 809, New York University, New York, New York 10003, USA.
Nat Neurosci. 2006 May;9(5):690-6. doi: 10.1038/nn1691. Epub 2006 Apr 16.
Sensory information is encoded by populations of neurons. The responses of individual neurons are inherently noisy, so the brain must interpret this information as reliably as possible. In most situations, the optimal strategy for decoding the population signal is to compute the likelihoods of the stimuli that are consistent with an observed neural response. But it has not been clear how the brain can directly compute likelihoods. Here we present a simple and biologically plausible model that can realize the likelihood function by computing a weighted sum of sensory neuron responses. The model provides the basis for an optimal decoding of sensory information. It explains a variety of psychophysical observations on detection, discrimination and identification, and it also directly predicts the relative contributions that different sensory neurons make to perceptual judgments.
感觉信息由神经元群体进行编码。单个神经元的反应本质上是有噪声的,因此大脑必须尽可能可靠地解读这些信息。在大多数情况下,解码群体信号的最佳策略是计算与观察到的神经反应一致的刺激的可能性。但目前尚不清楚大脑如何直接计算可能性。在此,我们提出了一个简单且符合生物学原理的模型,该模型可以通过计算感觉神经元反应的加权和来实现似然函数。该模型为感觉信息的最优解码提供了基础。它解释了关于检测、辨别和识别的各种心理物理学观察结果,并且还直接预测了不同感觉神经元对感知判断的相对贡献。