Kim Sung Joon, Cegelski Lynette, Preobrazhenskaya Maria, Schaefer Jacob
Department of Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
Biochemistry. 2006 Apr 25;45(16):5235-50. doi: 10.1021/bi052660s.
Solid-state NMR has been used to examine isolated cell walls and intact whole cells of Staphylococcus aureus complexed to five different vancomycin, eremomycin, and chloroeremomycin derivatives. The cell walls and whole cells were specifically labeled with d-[1-(13)C]alanine, or a combination of [1-(13)C]glycine and [epsilon-(15)N]lysine. Each of the bound glycopeptides had a (19)F-labeled substituent at either its C-terminus or its disaccharide position. The (13)C{(19)F} rotational-echo double-resonance (REDOR) dephasing for the cell-wall (13)C-labeled bridging pentaglycyl segment connecting a glycopeptide-complexed peptidoglycan stem with its neighboring stem indicates that the fluorine labels for all bound glycopeptides are positioned at one or the other end of the bridge. An exception is N'-(p-trifluoromethoxybenzyl)chloroeremomycin, whose hydrophobic substituent differs in length by one phenyl group compared to that of oritavancin, N'-4-[(4-chlorophenyl)benzyl)]chloroeremomycin. For this drug, the fluorine label is near the middle of the pentaglycyl segment. (15)N{(19)F} REDOR dephasing shows the proximity of the fluorine to the bridge-link site of the pentaglycyl bridge for C-terminus-substituted moieties and the cross-link site for disaccharide-substituted moieties. Full-echo REDOR spectra of cell-wall complexes from cells labeled by d-[1-(13)C]alanine (in the presence of an alanine racemase inhibitor) reveal three different carbonyl carbon chemical-shift environments, arising from the d-Ala-d-Ala binding site and the d-Ala-Gly-1 cross-link site. The REDOR results indicate a single fluorine dephasing center in each peptidoglycan complex. Molecular models of the mature cell-wall complexes that are consistent with internuclear distances obtained from (13)C{(19)F} and (15)N{(19)F} REDOR dephasing allow a correlation of structure and antimicrobial activity of the glycopeptides.
固态核磁共振已被用于研究与五种不同的万古霉素、埃瑞霉素和氯埃瑞霉素衍生物复合的金黄色葡萄球菌的分离细胞壁和完整全细胞。细胞壁和全细胞用d-[1-(13)C]丙氨酸或[1-(13)C]甘氨酸与[ε-(15)N]赖氨酸的组合进行特异性标记。每种结合的糖肽在其C端或其二糖位置都有一个(19)F标记的取代基。对于连接糖肽复合肽聚糖主干与其相邻主干的细胞壁(13)C标记的桥连五甘氨酰段,(13)C{(19)F}旋转回波双共振(REDOR)去相位表明,所有结合糖肽的氟标记位于桥的一端或另一端。N'-(对三氟甲氧基苄基)氯埃瑞霉素是一个例外,其疏水取代基的长度与奥利万星、N'-4-[(4-氯苯基)苄基)]氯埃瑞霉素相比相差一个苯基。对于这种药物,氟标记靠近五甘氨酰段的中间位置。(15)N{(19)F} REDOR去相位显示氟与C端取代部分的五甘氨酰桥的桥连位点以及二糖取代部分的交联位点接近。来自用d-[1-(13)C]丙氨酸标记的细胞(在丙氨酸消旋酶抑制剂存在下)的细胞壁复合物的全回波REDOR光谱揭示了三种不同的羰基碳化学位移环境,这是由d-Ala-d-Ala结合位点和d-Ala-Gly-1交联位点引起的。REDOR结果表明每个肽聚糖复合物中有一个单一的氟去相位中心。与从(13)C{(19)F}和(15)N{(19)F} REDOR去相位获得的核间距一致的成熟细胞壁复合物的分子模型,使得能够将糖肽的结构与抗菌活性相关联。