Jiang Peng
Science and Technology Division, Corning Incorporated, Corning, New York 14831, USA.
Langmuir. 2006 Apr 25;22(9):3955-8. doi: 10.1021/la052326x.
This letter reports a versatile nonlithographic technique for mass fabricating three types of technologically important materials-polymer microwell arrays, 2D-ordered magnetic nanodots, and semiconductor nanopillar arrays, each with high crystalline qualities and wafer-scale sizes. Spin-coated hexagonal non-close-packed silica colloidal crystals embedded in a polymer matrix are used as starting templates to create 2D polymeric microwell arrays. These through-hole arrays can then be used as second-generation templates to make periodic magnetic nanodots and semiconductor nanopillars. This self-assembly approach is compatible with standard semiconductor microfabrication, and complex micropatterns can be created for potential device applications. The wafer-scale technique may find important applications in biomicroanalysis, high-density magnetic recording media, and microphotonics.
本信函报道了一种通用的非光刻技术,用于大规模制造三种具有重要技术意义的材料——聚合物微孔阵列、二维有序磁性纳米点和半导体纳米柱阵列,每种材料都具有高结晶质量和晶圆级尺寸。嵌入聚合物基质中的旋涂六边形非密排二氧化硅胶体晶体用作起始模板,以创建二维聚合物微孔阵列。然后,这些通孔阵列可用作第二代模板,以制造周期性磁性纳米点和半导体纳米柱。这种自组装方法与标准半导体微加工兼容,并且可以创建复杂的微图案以用于潜在的器件应用。这种晶圆级技术可能在生物微分析、高密度磁记录介质和微光子学中找到重要应用。