Bagwe Rahul P, Hilliard Lisa R, Tan Weihong
Center for Research at the Bio/Nano Interface, Department of Chemistry and Shands Cancer Center, UF Genetics Institute, University of Florida, Gainesville, Florida 32611, USA.
Langmuir. 2006 Apr 25;22(9):4357-62. doi: 10.1021/la052797j.
In this article, a systematic study of the design and development of surface-modification schemes for silica nanoparticles is presented. The nanoparticle surface design involves an optimum balance of the use of inert and active surface functional groups to achieve minimal nanoparticle aggregation and reduce nanoparticle nonspecific binding. Silica nanoparticles were prepared in a water-in-oil microemulsion and subsequently surface modified via cohydrolysis with tetraethyl orthosilicate (TEOS) and various organosilane reagents. Nanoparticles with different functional groups, including carboxylate, amine, amine/phosphonate, poly(ethylene glycol), octadecyl, and carboxylate/octadecyl groups, were produced. Aggregation studies using SEM, dynamic light scattering, and zeta potential analysis indicate that severe aggregation among amine-modified silica nanoparticles can be reduced by adding inert functional groups, such as methyl phosphonate, to the surface. To determine the effect of various surface-modification schemes on nanoparticle nonspecific binding, the interaction between functionalized silica nanoparticles and a DNA chip was also studied using confocal imaging/fluorescence microscopy. Dye-doped silica nanoparticles functionalized with octadecyl and carboxylate groups showed minimal nonspecific binding. Using these surface-modification schemes, fluorescent dye-doped silica nanoparticles can be more readily conjugated with biomolecules and used as highly fluorescent, sensitive, and reproducible labels in bioanalytical applications.
本文对二氧化硅纳米颗粒表面改性方案的设计与开发进行了系统研究。纳米颗粒表面设计涉及惰性和活性表面官能团的最佳平衡,以实现纳米颗粒的最小聚集并减少纳米颗粒的非特异性结合。二氧化硅纳米颗粒在油包水微乳液中制备,随后通过与正硅酸四乙酯(TEOS)和各种有机硅烷试剂共水解进行表面改性。制备了具有不同官能团的纳米颗粒,包括羧酸盐、胺、胺/膦酸盐、聚乙二醇、十八烷基以及羧酸盐/十八烷基基团。使用扫描电子显微镜(SEM)、动态光散射和zeta电位分析进行的聚集研究表明,通过在表面添加惰性官能团(如甲基膦酸盐),可以减少胺改性二氧化硅纳米颗粒之间的严重聚集。为了确定各种表面改性方案对纳米颗粒非特异性结合的影响,还使用共聚焦成像/荧光显微镜研究了功能化二氧化硅纳米颗粒与DNA芯片之间的相互作用。用十八烷基和羧酸盐基团功能化的染料掺杂二氧化硅纳米颗粒显示出最小的非特异性结合。使用这些表面改性方案,荧光染料掺杂的二氧化硅纳米颗粒可以更容易地与生物分子偶联,并用作生物分析应用中高荧光、灵敏且可重复的标记物。