Suppr超能文献

肽聚糖合成途径的基因对苔藓叶绿体分裂至关重要。

Genes for the peptidoglycan synthesis pathway are essential for chloroplast division in moss.

作者信息

Machida Mariko, Takechi Katsuaki, Sato Hiroshi, Chung Sung Jin, Kuroiwa Haruko, Takio Susumu, Seki Motoaki, Shinozaki Kazuo, Fujita Tomomichi, Hasebe Mitsuyasu, Takano Hiroyoshi

机构信息

Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan.

出版信息

Proc Natl Acad Sci U S A. 2006 Apr 25;103(17):6753-8. doi: 10.1073/pnas.0510693103. Epub 2006 Apr 17.

Abstract

The general consensus is that a cyanobacterium phagocytosed by a host cell evolved into the plastids of red and green algae, land plants, and glaucophytes. In contrast to the plastids of glaucophytes, which retain a cyanobacterial-type peptidoglycan layer, no wall-like structures have been detected in plastids from other sources. Although the genome of Arabidopsis thaliana contains five genes that are essential for peptidoglycan synthesis, MurE, MurG, two genes for D-Ala-D-Ala ligase (Ddl), and the gene for translocase I (MraY), their functions have not been determined. We report that the moss Physcomitrella patens has nine homologous genes related to peptidoglycan biosynthesis: MurA, B, C, D, E, and F, Ddl, genes for the penicillin-binding protein Pbp, and dd-carboxypeptidase (Dac). Corroborating a computer prediction, analysis of the GFP fusion proteins with the N terminus of PpMurE or of PpPbp suggests that these proteins are located in the chloroplasts. Gene disruption of the PpMurE gene in P. patens resulted in the appearance of macrochloroplasts both in protonema and in leaf cells. Moreover, gene knockout of the P. patens Pbp gene showed inhibition of chloroplast division in this moss; however, no Pbp gene was found in A. thaliana.

摘要

普遍的共识是,被宿主细胞吞噬的蓝细菌进化成了红藻、绿藻、陆地植物和灰胞藻的质体。与保留蓝细菌型肽聚糖层的灰胞藻质体不同,在其他来源的质体中未检测到类似壁的结构。尽管拟南芥的基因组包含五个对肽聚糖合成至关重要的基因,即MurE、MurG、两个D - Ala - D - Ala连接酶(Ddl)基因和转位酶I(MraY)基因,但其功能尚未确定。我们报道,小立碗藓有九个与肽聚糖生物合成相关的同源基因:MurA、B、C、D、E和F、Ddl、青霉素结合蛋白Pbp基因和D - 羧肽酶(Dac)。对带有PpMurE或PpPbp N端的绿色荧光蛋白融合蛋白的分析证实了计算机预测,表明这些蛋白位于叶绿体中。小立碗藓中PpMurE基因的基因破坏导致原丝体和叶细胞中出现大叶绿体。此外,小立碗藓Pbp基因的基因敲除显示该苔藓的叶绿体分裂受到抑制;然而,在拟南芥中未发现Pbp基因。

相似文献

1
Genes for the peptidoglycan synthesis pathway are essential for chloroplast division in moss.
Proc Natl Acad Sci U S A. 2006 Apr 25;103(17):6753-8. doi: 10.1073/pnas.0510693103. Epub 2006 Apr 17.
3
Genes encoding lipid II flippase MurJ and peptidoglycan hydrolases are required for chloroplast division in the moss Physcomitrella patens.
Plant Mol Biol. 2021 Nov;107(4-5):405-415. doi: 10.1007/s11103-020-01081-0. Epub 2020 Oct 19.
5
Moss Chloroplasts Are Surrounded by a Peptidoglycan Wall Containing D-Amino Acids.
Plant Cell. 2016 Jul;28(7):1521-32. doi: 10.1105/tpc.16.00104. Epub 2016 Jun 20.
6
An Arabidopsis homolog of the bacterial peptidoglycan synthesis enzyme MurE has an essential role in chloroplast development.
Plant J. 2008 Mar;53(6):924-34. doi: 10.1111/j.1365-313X.2007.03379.x. Epub 2007 Nov 23.
7
Plastid peptidoglycan.
Biochim Biophys Acta. 2010 Feb;1800(2):144-51. doi: 10.1016/j.bbagen.2009.07.020. Epub 2009 Aug 6.
10
Three dynamin-related protein 5B genes are related to plastid division in Physcomitrella patens.
Plant Sci. 2011 Jun;180(6):789-95. doi: 10.1016/j.plantsci.2011.02.003. Epub 2011 Feb 13.

引用本文的文献

1
Molecular and biochemical insights from natural and engineered photosynthetic endosymbiotic systems.
Curr Opin Chem Biol. 2025 Aug;87:102598. doi: 10.1016/j.cbpa.2025.102598. Epub 2025 Apr 18.
3
A mysterious cloak: the peptidoglycan layer of algal and plant plastids.
Protoplasma. 2024 Jan;261(1):173-178. doi: 10.1007/s00709-023-01886-y. Epub 2023 Aug 21.
4
The Chloroplast Envelope of Angiosperms Contains a Peptidoglycan Layer.
Cells. 2023 Feb 9;12(4):563. doi: 10.3390/cells12040563.
6
Genes encoding lipid II flippase MurJ and peptidoglycan hydrolases are required for chloroplast division in the moss Physcomitrella patens.
Plant Mol Biol. 2021 Nov;107(4-5):405-415. doi: 10.1007/s11103-020-01081-0. Epub 2020 Oct 19.
7
-amino Acids in Plants: Sources, Metabolism, and Functions.
Int J Mol Sci. 2020 Jul 30;21(15):5421. doi: 10.3390/ijms21155421.
8
Peptidoglycan Production by an Insect-Bacterial Mosaic.
Cell. 2019 Oct 17;179(3):703-712.e7. doi: 10.1016/j.cell.2019.08.054. Epub 2019 Oct 3.
9
Analysis of an improved Cyanophora paradoxa genome assembly.
DNA Res. 2019 Aug 1;26(4):287-299. doi: 10.1093/dnares/dsz009.
10
Functional horizontal gene transfer from bacteria to eukaryotes.
Nat Rev Microbiol. 2018 Feb;16(2):67-79. doi: 10.1038/nrmicro.2017.137. Epub 2017 Nov 27.

本文引用的文献

1
An Arabidopsis homolog of the bacterial cell division inhibitor SulA is involved in plastid division.
Plant Cell. 2004 Jul;16(7):1801-11. doi: 10.1105/tpc.022335. Epub 2004 Jun 18.
2
Predotar: A tool for rapidly screening proteomes for N-terminal targeting sequences.
Proteomics. 2004 Jun;4(6):1581-90. doi: 10.1002/pmic.200300776.
3
GIANT CHLOROPLAST 1 is essential for correct plastid division in Arabidopsis.
Curr Biol. 2004 May 4;14(9):776-81. doi: 10.1016/j.cub.2004.04.031.
4
Genome sequence of the ultrasmall unicellular red alga Cyanidioschyzon merolae 10D.
Nature. 2004 Apr 8;428(6983):653-7. doi: 10.1038/nature02398.
5
The division of endosymbiotic organelles.
Science. 2003 Dec 5;302(5651):1698-704. doi: 10.1126/science.1082192.
6
An evolutionary puzzle: chloroplast and mitochondrial division rings.
Trends Plant Sci. 2003 Sep;8(9):432-8. doi: 10.1016/S1360-1385(03)00193-6.
8
Comparative genomics of Physcomitrella patens gametophytic transcriptome and Arabidopsis thaliana: implication for land plant evolution.
Proc Natl Acad Sci U S A. 2003 Jun 24;100(13):8007-12. doi: 10.1073/pnas.0932694100. Epub 2003 Jun 13.
9
ARC5, a cytosolic dynamin-like protein from plants, is part of the chloroplast division machinery.
Proc Natl Acad Sci U S A. 2003 Apr 1;100(7):4328-33. doi: 10.1073/pnas.0530206100. Epub 2003 Mar 17.
10
A plant-specific dynamin-related protein forms a ring at the chloroplast division site.
Plant Cell. 2003 Mar;15(3):655-65. doi: 10.1105/tpc.009373.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验