Suppr超能文献

基于支持向量机和启发式方法预测肽阴离子从水溶液转移到硝基苯中的标准吉布斯自由能

Prediction of standard Gibbs energies of the transfer of peptide anions from aqueous solution to nitrobenzene based on support vector machine and the heuristic method.

作者信息

Feng Luan, Xiaoyun Zhang, Haixia Zhang, Ruisheng Zhang, Mancang Liu, Zhide Hu, Botao Fan

机构信息

Department of Chemistry, Lanzhou University, 730000, Lanzhou, China.

出版信息

J Comput Aided Mol Des. 2006 Jan;20(1):1-11. doi: 10.1007/s10822-005-9031-1. Epub 2006 Apr 19.

Abstract

Quantitative structure-property relationship (QSPR) method was performed for the prediction of the standard Gibbs energies (DeltaGtheta) of the transfer of peptide anions from aqueous solution to nitrobenzene. Descriptors calculated from the molecular structures alone were used to represent the characteristics of the peptides. The four molecular descriptors selected by the heuristic method (HM) in COmprehensive DEscriptors for Structural and Statistical Analysis (CODESSA) were used as inputs for support vector machine (SVM) and radial basis function neural networks (RNFNN). The results obtained by the novel machine learning technique, SVM, were compared with those obtained by HM and RBFNN. The root mean squared errors (RMS) of the training, predicted and overall data sets are 2.192, 2.541 and 2.267 unit (kJ/mol) for HM, 1.604, 2.478 and 1.817 unit (kJ/mol) for RBFNN and 1.5621, 2.364 and 1.756 unit (kJ/mol) for SVM, respectively. The prediction results were in agreement with the experimental values. This paper provided a potential method for predicting the physiochemical property (DeltaGtheta) of various small peptides.

摘要

采用定量结构-性质关系(QSPR)方法预测肽阴离子从水溶液转移至硝基苯过程中的标准吉布斯自由能(ΔGθ)。仅根据分子结构计算得到的描述符用于表征肽的特征。通过结构与统计分析综合描述符(CODESSA)中的启发式方法(HM)选择的四个分子描述符用作支持向量机(SVM)和径向基函数神经网络(RNFNN)的输入。将新型机器学习技术SVM得到的结果与HM和RBFNN得到的结果进行比较。对于HM,训练数据集、预测数据集和总体数据集的均方根误差(RMS)分别为2.192、2.541和2.267单位(kJ/mol);对于RBFNN,分别为1.604、2.47和1.817单位(kJ/mol);对于SVM,分别为1.5621、2.364和1.756单位(kJ/mol)。预测结果与实验值相符。本文提供了一种预测各种小肽物理化学性质(ΔGθ)的潜在方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验