Jung Christof, Taylor Howard S, Sibert Edwin L
Centro de Ciencias Físicas, Universidad Nacional Autónoma de México, Av. Universidad s/n, 62251 Cuernavaca, México.
J Phys Chem A. 2006 Apr 27;110(16):5317-25. doi: 10.1021/jp055679d.
The dispersed fluorescence spectrum of the ground electronic state of thiophosgene, SCCl2, is analyzed in a very complex region of vibrational excitation, 7000-9000 cm(-1). The final result is that most of the inferred excited vibrational levels are assigned in terms of approximate constants of the motion. Furthermore, each level is associated with a rung on a ladder of quantum states on the basis of common reduced dimension fundamental motions. The resulting ladders cannot be identified by any experimental means, and it is the interspersing in energy of their rungs that makes the spectrum complex even after the process of level separation into polyads. Van Vleck perturbation theory is used to create polyad constants of the motion and a spectroscopic Hamiltonian from a potential fitted to experimental data. The eigen functions of this spectroscopic Hamiltonian are rewritten as semiclassical wave functions and transformed to a representation that allows us to analyze and assign the spectra with no other work other than to utilize concepts from nonlinear dynamics.
对硫光气(SCCl2)基电子态的分散荧光光谱在7000 - 9000 cm⁻¹这一非常复杂的振动激发区域进行了分析。最终结果是,大多数推断出的激发振动态是根据近似的运动常数来确定的。此外,基于共同的约化维基本运动,每个能级都与量子态阶梯上的一级相关联。所得的阶梯无法通过任何实验手段识别,正是它们能级在能量上的相互交错使得即使在将能级分离为多重组之后,光谱仍然很复杂。利用范弗莱克微扰理论从拟合实验数据的势能中创建多重组的运动常数和一个光谱哈密顿量。这个光谱哈密顿量的本征函数被重写为半经典波函数,并转换到一种表示形式,使我们能够在除了利用非线性动力学概念之外无需其他工作的情况下分析和确定光谱。